24P209

(Pages: 2)

Name:

Reg.No:

Maximum : 30 Weightage

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY2 C08 - COMPUTATIONAL PHYSICS

(Physics)

(2019 Admission onwards)

Time : 3 Hours

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. Differentiate between compiler and interpreter.
- 2. WAP to input the side of a cube and to find its volume and surface area.
- 3. Write a short note on formatted printing.
- 4. Outline various functions used for the creation of arrays.
- 5. Write a short note on linear algebra module in python.
- 6. What do you mean by curve fitting?
- 7. What do you mean by initial value problems? Give an example.
- 8. How can you incorporate the effect of viscous force in a body falling through a fluid?

 $(8 \times 1 = 8 \text{ Weightage})$

Section B

Answer any *two* questions. Each question carries 5 weightage.

- 9. Explain the various iterative constructs in python with examples and codes of python.
- 10. Explain the matplotlib module with its various preparatory and plotting functions.
- 11. Explain the finite equilibrium method and shooting method used to solve boundary value problems.
- 12. Explain the motion of an Ideal Simple Harmonic Oscillator using Euler method.

 $(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *four* questions. Each question carries 3 weightage.

- 13. Explain the various oprations on lists and sets in python?
- 14. Following table gives the census population(in million)of a state for the years 1971 to 2011. Estimate the population for the year 1974 by appropriate interpolation technique.

Year	1971	1981	1991	20001	2011
Population	46	66	81	93	101

- 15. Evaluate using simpson's rule with step size=0.25 $\int_{0}^{1} \frac{dx}{1+x^{2}}$
- 16. Find the solution of the equation $f(x)=x^3-2x-5$ using bisection method.
- ^{17.} Solve the differential equation $\frac{dy}{dx} = \frac{2y}{x}$ at y(1.5), given that y(1) = 2, by 4th order R-K method. Choose step size = 0.25.
- 18. Write a program to compute the DFT of a sequence.
- 19. Explain the theory of projectile motion with air drag.

 $(4 \times 3 = 12 \text{ Weightage})$
