16P401

Time: 3 Hours

(Pages: 2)

Name:		 		 				
Reg.No:	•••	 	 •	 • •	 •	•	•	•

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2018

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P MT4 C15-FUNCTIONAL ANALYSIS II

(Mathematics)

(2015 Admission onwards)

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Let X be a normed space and $f: X \to K$ be linear. Prove that f is closed iff f is continuous.
- 2. Prove or disprove: "Comparable norms preserves completeness".
- 3. Let X be a normed space and $A \in BL(X)$ beinvertible. Show that $\sigma(A^{-1}) = \{k^{-1}: k \in \sigma(A)\}$.
- 4. Let *X* be a Banach space, $A \in BL(X)$ and $||A^p|| < 1$ for some positive integer p. Prove that zero is not a spectral value of the operator I A.
- 5. Let X and Y be two normed spaces, $k \in K$ and $A, B \in BL(X, Y)$. Prove that (A + B)' = A' + B' and (kA)' = kA'
- 6. Prove or disprove: "Dual of a separable normed space need not be separable".
- 7. Prove that the normed space l^p is reflexive for 1 .
- 8. Let *H* be a Hilbert space and *f*, *g* ∈ *H'*. Define ⟨*f*, *g*⟩' = ⟨*T*(*g*), *T*(*f*)⟩ where *T*: *H'* → *H* defined by *T*(*f*) = the representer of *f* in *H*. Prove that ⟨ , ⟩' is an inner product on *H'* and ⟨*f*, *f*⟩' = ||*f*||², ∀*f* ∈ *H'*.
- 9. Let *H* be a Hilbert space over \mathbb{C} and $A \in BL(H)$. Prove that there exist unique self adjoint operators *B* and *C* on *H* such that A = B + iC.
- 10. Let *H* be a Hilbert space and $A \in BL(H)$. Prove that $||A^*A|| = ||A||^2 = ||AA^*||$.
- 11. Prove or disprove: "Every normal operatoris unitary".
- 12. Prove that the composition of two positive operators need not be positive.
- 13. Give an example of a self adjoint operator whose eigen spectrum is empty.
- 14. Let *H* be a self-adjoint compact operator on a non zero Hilbert space and $A \in BL(H)$. Prove that ||A|| or -||A|| is an eigen value of *A*.

(14 x 1 = 14 weightage)

Part B

Answer any *seven* questions. Each question carries 2 weightage.

15. Give an example of a closed linear map which is not continuous. Does this contradict the closed graph theorem?

- 16. Let $X = l^p$, $1 \le p \le \infty$ and define $A(x) = \left(x(1), \frac{x(2)}{2}, \frac{x(3)}{3}, \dots\right)$ for $x \in l^p$. Find $\sigma(A)$.
- 17. Let X be a Banach space. Prove that the set of all invertible operators is open in BL(X)and the map $A \to A^{-1}$ is continuous on this set.
- 18. Let X be a normed space and $\{x_1', x_2', ..., x_m'\}$ be a linearly independent subset of X'. Prove that there exist $x_1, x_2, ..., x_m \in X$ such that $x_j'(x_i) = \delta_{ij}$, for i, j = 1, 2, ..., m, where $\delta_{ij} = \begin{cases} 1, \text{if } i = j \\ 0, \text{if } i \neq j \end{cases}$.
- 19. State and prove projection theorem.
- 20. Prove that every bounded sequence in a Hilbert space has a weak convergent subsequence.
- 21. Let H be a Hilbert space and $A \in BL(H)$. Prove that there exist a unique $B \in BL(H)$ such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$, for all $x, y \in H$.
- 22. Let X be an inner product space and $A, B \in BL(X)$ with A self-adjoint. Prove that AB = 0 iff $R(A) \perp R(B)$.
- 23. Let *H* be a Hilbert space and $A \in BL(H)$. Prove that A = 0 iff $\langle A(x), x \rangle = 0$ for all $x \in H$.
- 24. Prove that the set of all compact operators on a Hilbert space H is closed in BL(H).

(7 x 2 =14 weightage)

Part C

Answer any *two* questions. Each question carries **4** weightage.

- 25. State and prove open mapping theorem. Also prove that the completeness property cannot be dropped from the assumption.
- 26. Let *X* be a normed space and $A \in BL(X)$ be of finite rank. Prove that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
- State and prove Riesz Representation theorem for continuous linear functionals on a Hilbert space.
- 28. Let *H* be a Hilbert space over \mathbb{C} and *A* be a continuous linear map on *H*. Prove that

(i)
$$k \in \sigma(A)$$
 if and only if $k \in \sigma(A^*)$.

(ii)
$$\sigma_e(A) = \sigma_a(A)$$
 and $\sigma(A) = \sigma_a(A) \cup \{k \in \mathbb{C} : \bar{k} \in \sigma_e(A^*)\}.$

(2 x 4 =8 weightage)
