(Pages :2)

Name Reg.No

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2018

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15 PMT4 E02-ALGEBRAIC NUMBER THEORY

(Mathematics)

(2015 Admission onwards)

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Express the polynomial $t_1^3 + t_2^3 + t_3^3$ in terms of elementary symmetric polynomials(n = 3).
- 2. Find the order of the group G/H where G is free abelian with Z-basis x, y, z and H is generated by x + 3y 5z, 2x 4y, 7x + 2y 9z.
- 3. Find all monomorphisms $Q(\sqrt[3]{7}) \rightarrow C$.
- 4. Find θ such that $Q(\theta) = Q(\sqrt{2}, i)$.
- 5. Let $K = Q(\xi)$ where $\xi = e^{2\pi i/5}$. Calculate $N_K(\alpha)$ and $T_K(\alpha)$ for $\alpha = \xi + \xi^2$.
- Is 10 = (3 + i)(3 − i) = 2.5 an example of non-unique factorization in Z[i]? Justify your answer.
- 7. Show that a prime in an integral domain D is always irreducible.
- 8. Let $x \in \mathfrak{D}$. If N(x) is a rational prime, prove that x is irreducible in \mathfrak{D} .
- 9. Let K be the number field Q(ξ) where $\xi = e^{2\pi i/p}$ for an odd prime p. If I is the ideal generated by $\lambda = 1-\xi$ in the ring of integers $\mathbb{Z}[\xi]$ of K, then show that I $p^{-1} = \langle p \rangle$ and N(I) = p.
- 10. Prove that the ring of integers of a number field is Noetherian.
- 11. Prove that, in $\mathbb{Z}[\sqrt{-17}]$, the element 2 is irreducible but not prime.
- 12. Sketch the lattice in \mathbb{R}^2 generated by (1, 1) and (1, 0) and a fundamental domain for the lattice.
- 13. Show that if L is an n-dimensional lattice in R^n then R^n/L is isomorphic to the n-dimensional torus.
- 14. For a given number field k, define the \mathbb{R} -algebra L^{st} and the map $\sigma: k \to L^{st}$.

(14 x 1 = 14 weightage)

Part B

Answer any *seven* questions. Each question carries 2 weightage

15. Let R be a ring. Show that every symmetric polynomial in $R[t_1, t_2, ---, t_n]$ is expressible as a polynomial with coefficients in R in the elementary symmetric polynomials $S_1, S_2 ---, S_n$.

16P403

- 16. Show that every subgroup H of a free abelian group G of rank n is free of rank $s \le n$.
- 17. Show that an algebraic number α is an algebraic integer iff its minimum polynomial over Q has coefficients in Z.
- 18. Let d be a square free rational integer. Show that the integers of $Q(\sqrt{d})$ are :
 - (i) $Z[\sqrt{d}]$ if $d \not\equiv 1 \mod(4)$.
 - (ii) $Z\left[\frac{1}{2} + \frac{1}{2}\sqrt{d}\right]$ if $d \equiv 1 \mod(4)$.
- 19. Show that an integral domain D is noetherianiff D satisfies the ascending chain condition.
- 20. Show that factorization into irreducible is not unique in the ring of integers of $Q(\sqrt{15})$.
- 21. Show that the non-zero fractional ideals of D, where D is the ring of integers of a number field K of degree n, form an abelian group under multiplication.
- 22. Show that an additive group of \mathbb{R}^n is a lattice iff it is discrete.
- 23. State and prove Minkowski's theorem.
- 24. Let L be an n-dimensional lattice in \mathbb{R}^n with basis $\{e_1, e_2, \dots, e_n\}$, show that if $e_i = (a_{1i}, a_{2i}, \dots, a_{ni})$, then the volume of the fundamental domain T of L defined by the basis is $v(T) = |deta_{ij}|$.

(7 x 2 = 14 weightage)

Part C

Answer any two questions. Each question carries 4 weightage

- 25. Prove that the ring of integers of $\mathbb{Q}(\xi)$ is $\mathbb{Z}[\xi]$ if $\xi = e^{2\pi i/p}$, where p is an odd prime.
- 26. Let **D** be a domain in which factorization into irreducible is possible. Prove that factorization into irreducible is unique iff every irreducible is prime.
- 27. Prove that the field $Q(\sqrt{d})$ in norm-Euclidean for d = -1, -2, -3, -7 and -11.
- 28. a). With usual notations show that if $\alpha_1, \alpha_2, ..., \alpha_n$ is a basis for K over Q then $\sigma(\alpha_1), \sigma(\alpha_2), ..., \sigma(\alpha_n)$ are linearly independent over R.
 - b). Let D be the ring of integers of a number field K of degree n. Show that if $\mathbf{a} \neq 0$ is

an ideal of D then **a** contains an integer α with $|N(\alpha)| \leq \left(\frac{2}{\pi}\right)^t N(\mathbf{a}) \sqrt{|\Delta|}$, where Δ is the discriminant of K.

the discriminant of K.

 $(2 \times 4 = 8 \text{ weightage})$
