(Pages:2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P ST1 C01 – MEASURE THEORY AND INTEGRATION

(Statistics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

(Answer *all* questions. Weightage 1 for each question)

- 1. Define Point-wise and Uniform convergence.
- 2. If $f \in R(\alpha)$, $g \in R(\alpha)$ on [a, b] Show that $(f g) \in R(\alpha)$
- 3. Show that the set of prime numbers is a Lebesgue measurable set
- 4. Define σ field and show that it is closed under countable intersections.
- 5. Distinguish between simple function and continuous function.
- 6. If 'f' is integrable, show that |f| is integrable.
- 7. Show that a set *A* is a measurable if and only if its indicator function is a measurable function.
- 8. If f is measurable function and if f = g almost everywhere. Show that g is measurable.
- 9. Define *Lp* space
- 10. State Holder's inequality.
- 11. State Hahn decomposition theorem.
- 12. What do you mean by a product space?

(12 x 1=12 weightage)

Part B

(Answer any *eight* questions. Weightage 2 for each question)

- 13. State and prove Fundamental Theorem of Calculus.
- 14. Find the necessary and sufficient condition for the uniform convergence of a sequence of function $\{f_n\}$ defined on [a, b].
- 15. If $f \in R(\alpha)$, $g \in R(\alpha)$ on [a, b] Show that $(f + g) \in R(\alpha)$ and $\int_a^b (f + g) d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha$
- 16. State and prove Fatou's lemma.
- 17. Define measurable function. If f & g are measurable functions show that f 2g and f/g, such that $g \neq 0$ are measurable function.
- 18. Show that the sum and product of two simple functions are simple functions.
- 19. Distinguish between Lebesgue measure and Lebesgue-Stieltjes measure
- 20. State and prove Jordan Decomposition theorem
- 21. Show that convergence in *Lp* implies convergence in measure.
- 22. Show that a function f is measurable if and only if f^+ and f^- are measurable functions

- 23. State Fubini's theorem and point out its applications in Statistics.
- 24. Show that the sequence $\{f_n\}$ given by $f_n(x) = tan^{-1}nx, x \ge 0$ is uniformly convergent in any interval [a, b], a > 0 and is not uniformly convergent in [0, b]

(8 x 2=16 weightage)

Part C

(Answer any two questions. Weightage 4 for each question)

25. If $f \in R(\alpha)$, $g \in R(\alpha)$ on [a, b] Show that (a) fg and $|f| \in R(\alpha)$ (b) $|f| \in R(\alpha)$ and $\left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha$

26. (a) Prove that if $\lim_{n \to \infty} f_n(x) = f(x)$ then $\lim_{n \to \infty} \int_A f_{n=1} \int_A f$ where A is any measurable subset of [a,b] with finite measure and $\{f_n\}$ is an increasing sequence of measurable function.

(b State and prove Lebesgue Dominated Convergence Theorem.

- 27. (a) Let {f_n} be a sequence in Lp which converges almost everywhere to a measurable function 'f' then prove that {f_n} converges in Lp to'f' by stating necessary conditions.
 (b) Let μ(X) < ∞ and f_n ∈ Lp and f_n → f uniformly. Then prove that f ∈ Lp and f_n → f in Lp
- 28. State and prove Radon-Nikodym theorem.

(2 x 4=8 weightage)
