Reg. No....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(U.G.-CCSS)

Core Course-Mathematics

MM 3B 03-CALCULUS

Three Hours

Maximum: 30 Weightage

- I. Answer all questions :-
 - 1 Let F(t) = 2(t-1) + 3. Evaluate F at the input value x + 2.
 - 2 If $f(x) = \sqrt{x}$ and g(x) = x + 1 find $(f \circ g) x$.
 - 3 Find the domain and range of $f(x) = 1 + x^2$.
 - 4 Evaluate $\lim_{x \to -2} \frac{2x-4}{x^3+2x^2}.$
 - 5 At what points are the function $y = \frac{1}{x-2} 3x$ is continuous.
 - 6 State Rolle's theorem.
 - 7 What are the critical points of f given

$$f'(x) = (x-1)(x+2)(x-3).$$

- 8 Evaluate $\lim_{x \to \infty} \frac{5x^2 + 8x 3}{3x^2 + 2}$.
- 9 Find dy if $y = \frac{2x}{1+x^2}$.
- 10 Find the intervals in which the function f is increasing. Given f'(x) = x(x-1).

- 11 The length of the longest sub interval of a partition is called its ———.
- 12 Evaluate $\int_{0}^{\pi/3} 2 \sec^2 x \, dx.$

 $(12 \times \frac{1}{4} = 3 \text{ weight})$

- II. Answer all nine questions.
 - Find the volume of the solid generated by revolving the region bounded by the lines $y = x^3$.
 - 14 Find $\frac{dy}{dx}$ if $y = \int_{1}^{x^2} \cos t \, dt$.
 - 15 Find the average value of $f(x) = -3x^2 1$ on [0,1].
 - 16 Evaluate $\sum_{k=1}^{6} (3-k^2)$.
 - 17 Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.
 - 18 Find the absolute maximum and minimum values of $f(x) = -x 4, -4 \le x \le 1$.
 - 19 Find the function f(x) whose derivative is $\sin x$ and whose graph passes through the (0,2).
 - 20 Find the work done by a force of F(x) = $\frac{1}{x^2}$ N along the x-axis from x = 1 m. to x = 1
 - 21 Evaluate $\int_{0}^{\pi/4} \tan x \sec^{2} x \, dx.$

 $9 \times 1 = 9 \text{ wei}$

Answer any five questions :-

- 22 Find the lateral surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$, $0 \le x \le 4$, about the y-axis.
- 23 Find the length of the curve $y = \tan x$, $\frac{-\pi}{3} \le x \le 0$.
- 24 Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.
- 25 Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
- 26 Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.
- 27 Find the intervals on which the function $g(t) = -t^2 3t + 3$ is increasing and decreasing.
- About how accurately should we measure the radius r of a sphere to calculate the surface area $S = 4\pi^2$ within 1 % of its true value.

 $(5 \times 2 = 10 \text{ weightage})$

Answer any two questions :-

- 29 Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} 1$, $0 \le x \le 1$.
- 30 Show that the centre of mass of a straight, thin strip or rod of constant density has halfway between its two ends.
- 31 State and prove the fundamental theorem of calculus.

 $(2 \times 4 = 8 \text{ weightage})$