7	0	A	1	0
6	4	4	U	4

(Pages: 2)

Name	
Dom No	

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(UG-CCSS)

Complementary Course—Physics

PH 3C 05—OPTICS, LASER, ELECTRONICS AND COMMUNICATION

(2009-2012 Admissions)

e: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

- Each question carries 1/4 weightage. No real light source emits — electromagnetic waves. 2. Coherent waves are -3. For constructive interference to take place between two monochromatic light waves of wavelength λ the path difference should be -4. To observe diffraction, the size of obstacle must be — A diffraction pattern is obtained using a beam of red light. What happens if the Red light is replaced by blue light: (a) No change. (b) Diffraction bands become narrower and crowded together. (c) Bands become broader and farther apart. (d) Bands disappear.
- Diffraction fringes are —
- Optically active substance are those which -
- A laser is a ——— source.
- A Zener diode has a in the breakdown region.
- Voltage divider bias operates in the:
 - (a) Active region.

- (b) Cut-off region.
- (c) Saturation region.
- (d) Breakdown region.
- An AND gate is equivalent to a
- A Colpitts oscillator uses:
 - (a) Tapped coil.

- (b) Inductive feedback.
- (c) Tapped capacitance.
- (d) No tuned LC circuit.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B

Answer all questions. Each question carries 1 weightage.

- 13. Give two comparisons of Newton and Galilean telescopes.
- 14. How can Coherent sources be obtained in practice?
- 15. Why is a soap bubble or thin film of oil spread over the surface of water appear coloured sunlight?
- 16. Explain the phenomenon of diffraction.
- 17. Explain why a graying is designed to produce only two orders.
- 18. Distinguish between polarized and unpolarized light.
- 19. What is Population Inversion?
- 20. Draw the circuit of a full wave rectifier.
- 21. What is an optical fiber? How does it work?

 $(9 \times 1 = 9)$ weighta

Part C

Answer any **five** questions. Each question carries 2 weightage.

- 22. State and explain Fermat's principle of extremum path. Give an example where the path of li is a relative maximum.
- 23. What is a biprism? In a biprism experiment the edge piece is placed at a distance of 1.2 m. fr the source. The distance between the virtual sources is 7.5×10^{-4} m. Find the wavelength of li if the eyepiece is moved transversely through a distance of 1.888 cm. for 20 fringes.
- 24. What are Fresnel half period zones? What is the radius of the first half period zone in a zone pl behaving like a convex lens of focal length 0.6 m. for light of wavelength 6000 Å.
- 25. Give the construction and working of a Nicol Prism. How is it used as an analyzer?
- 26. Explain the working of a Huygen's eyepiece. Why is it called a negative eyepiece?
- 27. Explain the principle and working of a He-Ne laser.
- 28. Explain the working of a Hartley oscillator.

 $(5 \times 2 = 10 \text{ weighta})$

Part D

Answer any **two** questions. Each question carries 4 weightage.

- 29. What are Newton's rings? How would you obtain Newton's rings with bright center? Describe experiment to determine the wavelength of sodium light using Newton's rings.
- 30. What is a plane diffraction grating. Describe with theory how the wavelength of light is determined using a grating.
- 31. Explain the construction and working of a CE amplifier. Draw the frequency response. What bandwidth? What are the merits of negative feedback?

 $(2 \times 4 = 8 \text{ weighta})$