4	-	TA	-
1	61		12
	434	12	. 9

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY-2017 and average AS

(Regular/Supplementary/Improvement)

(CUCBCSS - UG)

CC15UMAT2C02 - MATHEMATICS

(Complementary Course: Mathematics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 80 Marks

Answer All Questions. Each question carries 1 mark

- Write $sinh^{-1} x$ as a logarithmic function.

- 3. Investigate the convergence of $\int_{1}^{\infty} \frac{dx}{x^2}$ 4. Find the nth term of the sequence $1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, \dots$
- Find $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$.
- State whether the series $\sum_{n=1}^{\infty} \frac{n+1}{n}$ converge or diverge.
- Find $\frac{\partial f}{\partial x}$ at (4, -5) if $f(x, y) = x^2 + 3xy + y$.
- 8. Define a power series about x = a.
- 9. Find the nth partial sum of $\sum_{n=1}^{\infty} (-1)^n$
- 10. Find the Cartesian coordinates of the cylindrical coordinates (0,1,0).
- 11. Find the polar equation of the circle $x^2 + (y 3)^2 = 9$.
- 12. What is the domain of $(x, y) = \sqrt{y x^2}$?

The area of the surface of BTRAG formed by the revolution of the cardioid

Answer any NINE Questions. Each question carries 2 marks

- 13. Prove that $\cosh^2 x \sinh^2 x = 1$ using the definition of $\sinh x$ and $\cosh x$.
- 14. Find the volume of the solid generated by revolving the region bounded by the line x + 2y = 2 and the lines y = 0, x = 0 about the x-axis.
- 15. Examine the convergence of the improper integral $\int_{-\infty}^{0} \cosh x \, dx$.
- 16. Find the perimeter of the cardioid $r = a(1 \cos \theta)$. 17. Evaluate $\int \frac{\sinh x}{\cosh^4 x} dx$.
- 18. Show that the sequence 0, 2, 0, 2, 0, 2, does not converge to zero.
- 19. Evaluate $\lim_{n\to\infty} \frac{\sin^2 n}{2^n}$
- 20. Find the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3}{2^n}$

21. Prove that the following alternating series is convergent.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots + \frac{(-1)^{n+1}}{n} + \dots + \infty$$

22. Find the domain and range of the function $f(x, y) = \sin^{-1}(y - x)$

23. Find the linearization of $f(x, y) = x^2 + y^2 + 1$ at the point (1,1).

(Complementar O TRAP Mathematics)

Answer any SIX Questions. Each question carries 5 marks

25. Show that $\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})$ for all real $x \ge 1$.

26. Find the area of the surface generated by revolving about the x-axis, the portion in the first and second quadrants of the circle $x^2 + y^2 = a^2$.

27. Prove that if $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. 28. Verify $w_{xy} = w_{yx}$, if $w = e^x + x \ln y + y \ln x$. 29. Show that the function $f(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$ has no limit as $(x, y) \to (0, 0)$.

30. Find the Maclaurin's series for $f(x) = \ln(1+x)$. Also find the Taylor polynomials of orders 0,1,2 and 3 generated by f at zero.

31. Evaluate $\int_0^1 \frac{2dx}{\sqrt{3+4x^2}}$ 32. Compare $\int_1^\infty \frac{dx}{x^2}$ and $\int_1^\infty \frac{dx}{1+x^2}$ with limit comparison test.

33. Graph the lemniscate $r^2 = 4 \sin 2\theta$.

10. Find the Cartesian coordinates of the corrand coordinates (0,1,0)

Answer any TWO Questions. Each question carries 10 marks of and bailed the

34. Find $S = F \times S = F$

a) The area of the surface of the solid formed by the revolution of the cardioid $r = a(1 + \cos \theta)$ about the initial line.

b) The spherical co-ordinate equation for the sphere $x^2 + y^2 + (z - 1)^2 = 1$. 35. Using chain rule express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ in terms of r and θ if $w = \tan^{-1}\left(\frac{y}{x}\right)$, $x = r\cos\theta$, $y = r\sin\theta$. Also evaluate $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ at $\left(1, \frac{\pi}{6}\right)$.

36. Show that the following series converges to $\tan^{-1} x$ for all -1 < x < 1 and smirrar -1 $x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$ (9 so 2) and only a substitution of the cardioid $x = a(1 - \cos \theta)$.

$$x - \frac{x^3}{3} + \frac{x^3}{5} - \frac{x'}{7} + \dots \dots$$

 $(2 \times 10 = 20 \times 2)$ ence (0, 2, 0, 2, ..., 0, 2, ..., 0) does not converge to zero.