-	1	TA	4 4
Т	61	1 Z	14

(Pages: 2)

Name: Reg. No....

SECOND SEMESTER B.C.A DEGREE EXAMINATION, MAY-2017

(Regular/Supplementary/Improvement)

(CUCBCSS - UG)

CC15UBCA 2C 04 - NUMERICAL METHODS IN C

(Complementary Course) (2015 Admission Onwards)

Time: Three hours

Part A

Maximum: 80 Marks

Answer all questions.

- 1. What is round off error?
- State intermediate value theorem.
- Write the following as a matrix equation x = 9, y + z = 7, 3y = 2.
- What is a backward difference operator?
- 7. Write the Linear Newton interpolating polynomial.
- Find $\Delta^4 y_0$.
- 10. Define linear and non-linear ordinary differential equation.

(10x1=10 marks)

bodism Part Bus aniaU

Answer all five questions.

- 11. Find the sum of 0.123×10^3 and 0.456×10^2 and write the result in three digit mantissa form.
- 12. Explain the bisection method.
- 13. What is an augmented matrix?
- 14. Given f(0) = 1, f(1) = 2 find the linear interpolating polynomial using Lagrange interpolation.
- 15. Find the characteristic equation of = [12 i 8 [010] using the fourth order classical Runge-

Part C Answer any five questions.

- 16. Approximate the value of $17^{1/3}$ in iterations with initial approximation $x_0 = 2$.
- 17. Solve the system of equations x + y + z = 6, 3x + y + 4z = 20, 2x + y + 3z = 13 using Gauss elimination method

18. Show that $\mu = (1 + \frac{\delta^2}{4})^{1/2}$.

19. Using the Lagrange interpolation method find f(3).

v	-1	2 2000	4	5
f(x)	-5	13	255	625

20. Estimate f(-0.5) and f(0.5) using Hermite interpolation.

x	f(x)	f'(x)
-1	1 .28	onesmo +5
0	1	1
1	3	7

21. Evaluate $\int_0^1 \frac{1}{1+x} dx$ using Simpson's method. Deligen vacue 2) Eigen vector.

22. Explain the Taylor series method for solving initial value problem. a garwolld sdr stnW

23. Solve x + 2y = 5, 3x - y = 1 using Cramer's rule. O factor to (5x4=20 marks)

Part D

Answer any five questions

24. Explain 1) the method of false position, 2) increment search method.

25. Solve x + 2y - z = 2, 3x + y + z = 1, 3x + 3y + 2z = 3 by determining the inverse of the co-efficient matrix.

26. Solve $\begin{bmatrix} 2 & 2 & 1 \\ 4 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Using Gauss- Jordan method.

27. Solve x + y - z = 2, 2x + 3y + 5z = -3, 3x + 2y - 3z = 6 Using LU decomposition method.

28. Using Romberg integration evaluate $\int_{\pi/4}^{\pi/2} \frac{\cos x \ln(\sin x)}{\sin^2 x + 1} dx$

29. Find the least square approximation of second degree for the following data

x	-2	-1	0	1	2
F(x)	mont500 90	mear interpolate	= 2 find the 1	$(1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	19

30. Solve the initial value problem using Euler method y' = t/y, y(0) = 1, h = 0.1.

31. Solve $u' = 2tu^2$, u(0) = 1 with h = 0.2 in [0, 0.4] using the fourth order classical Runge-Kutta method. (5x8 =40 marks)

Answe ****** questions.

16. Approximate the value of $17^{1/3}$ in iterations with initial approximation $x_0 = 2$

7. Solve the system of equations x + y + z = 6, 3x + y + 4z = 20, 2x + y + 3z = 13 using

Gauss elimination method