FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(U.G.-CCSS)

Core Course—Physics/Applied Physics

PH 5B 10/AP 5B 12—QUANTUM MECHANICS

me: Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

- 1. Photoelectric phenomenon was first explained by:
 - (a) Bohr.

(b) Millikan.

(c) Einstein.

- (d) Planck.
- 2. Neglecting relativistic change of mass, the wavelength associated with an electron of kinetic energy E is proportional to:
 - (a) $E^{1/2}$.

(b) $E^{-1/2}$

(c) E.

- (d) E^{-1} .
- 3. The phase velocity (v_p) and group velocity (v_g) of a de-Broglie wave in free space are related as :

(a)
$$\frac{v_p}{v_g} = \sqrt{2} \ .$$

(b) $v_p v_g = c^2$.

(c)
$$\frac{v_p}{v_g} = 0.5$$
.

(d) $v_p v_g = \sqrt{2c^2}$.

- 4. Of the following moving with the same velocity, the one which has largest wavelength is:
 - (a) An electron.

(b) A proton.

(c) A neutron.

- (d) An α-particle.
- 5. The existence of matter waves is confirmed by:
 - (a) Sten-Gerlach experiment.
- (b) Frank-Hute experiment.
- (c) Millikan's oil drop experiment.
- (d) Davidson and Germer experiment.

6. The allowed energy valves of a particle in a box of length L are given by:

(a)
$$\frac{n^2\pi^2h^2}{mL^2}$$
. (b) $\frac{n^2\pi^2h^2}{2mL^2}$.

(b)
$$\frac{n^2\pi^2\hbar^2}{2mL^2}$$

(c)
$$\frac{\pi^2 h^2}{2mL^2 n^2}$$
.

(d)
$$\frac{n \pi h}{2mL}$$
.

7. The Bohr's quantisation condition is:

(a)
$$L = \frac{nh}{2\pi}$$
.

(b)
$$L = nh$$
.

(c)
$$L = -nh$$
.

(d)
$$L = \frac{-nh}{2\pi}$$
.

8. The quantity $|\psi|^2$ represents:

- (a) Probability density. (b) Change density.

(c) Energy density.

(d) Wave intensity.

9. The momentum operator in quantum mechanics is:

(a)
$$\frac{\hbar}{i}\nabla$$

(c)
$$\frac{i}{\hbar}\nabla$$
.

(d)
$$\frac{i}{\hbar^2}\nabla$$

10. For normalised wave function the value of $\int_{-\infty}^{+\infty} \psi_m^* \psi_m d_{\tau}$ is:

(a) 0.

- (c) -1. we proved and delide one and (d) ∞. we see the drive proved an well of add to

11. The energy levels of harmonic oscillator according to Schrödinger's equation is:

(a)
$$n + w$$
.

(b)
$$\left(n+\frac{1}{2}\right)\hbar w$$
.

$$\frac{\hbar w}{\left(n+\frac{1}{2}\right)}. \text{ reached but negligible (d)} \quad \left(n^2-1\right)\hbar w. \text{ and he shall (d)}$$

(d)
$$\left(n^2-1\right) \frac{1}{h} w$$

- The expectation value of potential energy in hydrogen atom is:
 - (a) 13.6 eV.

(b) Zero.

(c) -13.6 eV.

(d) -27.2 eV.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Section B

Answer all questions.

- 3. Show that for a non-relativistic free particle, the phase velocity is half the group velocity.
- 4. What is meant by normalised and orthogonal wave functions?
- 5. What are eigenvalves and eigenfunctions?
- 16. Explain Zeeman effect.
- Write Schrödinger's time-independent wave equation.
- B. What is Compton effect?
- 9. What is zero point energy?
- Explain any one application of Heisenberg's uncertainty principle.
- 11. State the postulates of quantum mechanics.

 $(9 \times 1 = 9 \text{ weightage})$

Section C

Answer any five questions.

- The average lifetime of hydrogen in excited state is 2.5×10^{-14} s, calculate the uncertainty in the measurement of energy in this state.
- Calculate the energy difference between the ground state and the first excited state for an electron in one-dimensional rigid box of length 10^{-10} m (mass of electron = 9.1×10^{-31} kg and $h = 6.63 \times 10^{-34}$ Js).
- A particle is in motion along a line between x = 0 and x = a with zero potential energy, and at points for which x < 0 and x > a the potential energy is infinite. The wave function for the particle in the n^{th} state is given by:
 - $\psi_n = A \sin \frac{n\pi x}{a}$. Find the expressions for the normalized wave functions.
- Calculate the wave of Bohr magneton. Given $e=1.6\times 10^{-19}$ C, $h=6.62\times 10^{-34}$ J_s, $m=9.11\times 10^{-31}$ kg.
- What voltage must be applied to an electron microscope to produce electrons of wavelength of 0.5 Å? Given $e = 1.6 \times 10^{-19}$ C, $m = 9 \times 10^{-31}$ kg, $h = 6.62 \times 10^{-34}$ Js.

Turn over

- 27. Calculate the energy and momentum (in eV) of an X-ray photon of wavelength $2\,\text{Å}$.
- 28. Calculate the work function in electron volt for sodium metal given that photoelectric throwavelength is 6800 Å.

 $(5 \times 2 = 10 \text{ weig})$

Section D

Answer any two questions.

- 29. Obtain Schrödinger wave equation for a particle in one-dimensional rigid box. Solve it to eigenfunctions and show that eigenvalves are discrete.
- 30. (a) Derive time dependent Schrödinger equation.
 - (b) Explain the physical significance of wave function.
- 31. Describe the Stern-Gerlach experiment for verification of space quantization.

 $(2 \times 4 = 8 \text{ weig})$