Name		
	67	
Dog No		

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL/MAY 2015

(U.G.-CCSS)

Complementary Course—Mathematics

MM 4C 04—MATHEMATICS

Time: Three Hours

Maximum: 30 Weightage

Unit I

Answer all twelve questions.

1. Which of the following is not a solution of y'' - y = 0?

(a) e^x .

(b) e^{-x} .

(c) $e^x + e^{-x}$.

(d) $1 + e^x$.

2. Find the general solution of y'' + 9y' + 20y = 0.

3. Write a pair of basis solutions of $x^2 y'' - 4xy' + 6y = 0$.

4. If $y_1 = e^{2x}$, $y_2 = e^{-x}$ find $w(y_1, y_2)$.

5. Find the Laplace transform of sin wt.

6. Find L⁻¹ $\left(\frac{60+6s^2+s^4}{s^7}\right)$.

7. $f(x) = x^3 + 2x^2$ is an:

(a) Even Function.

(b) Odd function.

(c) Neither even nor odd.

(d) Either even or odd.

8. Write the one dimensional wave equation.

9. Find the smallest period p of $\cos \pi x$.

10. Plot the function $f(x) = x|x|, -\pi < x < \pi$.

11. Find a solution of the partial different equation $u_{xx} - u = 0$.

12. Write the iteration formula for the Picards methods.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Unit II

Answer any nine questions.

13. Apply
$$(D + 5)^2$$
 to $\sin 5x + 5x$.

14. Find the general solution of
$$y'' + 10y' + 25 = 0$$
.

15. Find two linearly independent solutions of
$$x^2 y'' - 2.5x y' - 2 = 0$$
.

16. Find a particular solution of
$$y'' - 5y' + 6y = e^x$$
.

17. Reduce to first order and solve
$$2xy'' = 3y'$$
.

18. Find the Laplace transform of
$$(t+1)^2 e^t$$
.

19. If
$$L[f(x)] = F(s)$$
 prove that

$$L\left(\frac{f(x)}{x}\right) = \int_{s}^{\infty} F(p) dp.$$

20. Find
$$L^{-1}\left[\frac{1}{s(1+2s)}\right]$$
.

21. Show that
$$u = x^2 + y^2$$
, $f = 4$ satisfies the Poissons equation.

22. Find the solutions of
$$u_{xx} + u_{yy} = 0$$
 by separating the variables.

23. Find
$$a_0$$
 in the Fourier series expansion of $f(x) = \begin{cases} o & \text{if } -2 < x < -1 \\ k & \text{if } -1 < x < 1. \\ o & \text{if } 1 < x < 2 \end{cases}$

24. Find first two approximate solutions
$$y_1(x)$$
 and $y_2(x)$ of the initial value problem $y' = x + y(0) = -1$ using Picard's method.

 $(9 \times 1 = 9 \text{ weighta})$

Unit III

Answer any five questions.

25. Solve the initial value problem
$$y'' + 1.5y' - y = 12 x^2 - 6x^3 - x^4$$
, $y(0) = 4$, $y'(0) = 8$.

26. Using method of variation of parameters solve
$$y'' + y = \sec x$$
.

27. Find
$$t^*e^t$$
 where * denotes convolution.

28. Using method of partial fractions find
$$L^{-1}\left[\frac{s^2+9s-9}{s^3-9s}\right]$$
.

- 29. Using convolution find the inverse Laplace transform of $\frac{1}{s(s^2+4)}$.
- 30. Solve the integral equation $y(t) = t + \int_0^t y(\tau) \sin(t \tau) d\tau$.
- 31. Find the Fourier series expansion of $f(x) = x^2$, $-\pi < x < \pi$.
- 32. Using Simpson's rule with n = 4 estimate $\int_0^1 5 x^4 dx$.

 $(5 \times 2 = 10 \text{ weightage})$

68

Unit IV

Answer any two questions.

- 33. Solve $x^2 y'' 4xy' + 6y = 21 x^{-4}$.
- 34. Using Runge-Kutta method solve the initial value problem y' = x + y, y(0) = 0, h = 0.2.
- 35. Find the Fourier series of $f(x) = \begin{cases} \frac{1}{2}(\pi + x), & -\pi \le x < 0 \\ \frac{1}{2}(\pi x), & 0 \le x < \pi \end{cases}$

 $(2 \times 4 = 8 \text{ weightage})$