Name.	***************************************
	29
Reg. No	D

FOURTH SEMESTER B.A. DEGREE EXAMINATION, APRIL/MAY 2015

(U.G.-CCSS)

Core Course—Economics

EC 4B 05—QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS-II

(2013 Admissions)

Time: Three Hours

Maximum: 30 Weightage

- I. Objective type questions, Answer all twelve questions:
 - 1 If a, b, c are in arithmetic progression then b a =
 - 2 log 10 1000 = ----
 - $3 \ 16^{\frac{3}{4}} = ---$
 - 4 If A is any set, then $A \cap \phi =$
 - 5 If f(x) is an even function, then f(-x) = ---.
 - 6 y = 3x + 5 is a straight line. State True or False.
 - 7 If $\frac{x}{3} + \frac{x}{2} = 5$, then x = ----.
 - 8 Matrix addition is commutative. State True or False.
 - 9 If A is a symmetric matrix then $A^T =$ _____.
 - 10 If $\begin{vmatrix} 1 & -3 \\ 3 & x \end{vmatrix} = 0$, then $x = \frac{1}{3}$
 - 11 $f(x) = \frac{x^2 4}{x 2}$ is not continuous at x =_____.
 - $12 \quad \frac{d^3}{dx^3} e^{-x} = \underline{\hspace{1cm}}$

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- II. Short answer type questions. Answer all nine questions:
 - 13 Distinguish between finite and infinite sets.
 - 14 Define disjoint sets.
 - 15 If $A = \{1, 2\}$ and $B = \{a\}$, find $A \times B$.

- 16 What do you mean by a linear equation? Give one example.
- 17 Define the terms domain and range.
- 18 Give one example for upper triangular matrix.
- 19 Find all cofactors of $\begin{vmatrix} 3 & 7 \\ 1 & 2 \end{vmatrix}$.
- 20 Define convexity of a function.
- 21 If $y = x \log x$, find the value of $\frac{dy}{dx}$.

 $9 \times 1 = 9$ weigh

III. Short essay or paragraph questions. Answer any five questions:

22 If
$$A = \{0, 1, 2, 5, 7\}$$
, $B = \{1, 2, 3\}$, $C = \{5, 7, 8\}$, find $A \cup B \cup C$ and $A \cap B \cap C$.

- 23 Solve the equation x(x 3) = 2(10 x).
- 24 If the third and seventh terms of a geometric progression are 2 and 1/8 respectively, fir tenth term.
- 25 Draw the graph of $y = x^2$.

26 If
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$
, find the value of A^2 .

27 Find the inverse of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 3 \end{bmatrix}$$
.

28 Solve the equation x - 2y = 16 and 3x + y = -1 by using Cramer's rule.

 $(5 \times 2 = 10 \text{ weight})$

IV. Essay questions. Answer any two questions:

29 If
$$\begin{vmatrix} x^3 + 1 & x^2 & x \\ y^3 + 1 & y^2 & y \\ z^3 + 1 & z^2 & z \end{vmatrix} = 0$$
 with $x \neq y \neq z$, then show that $xyz = 1$.

30 If
$$z = \log \sqrt{x^2 + y^2}$$
, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

31 If
$$x^y = y^x$$
, show that $\frac{dy}{dx} = \frac{y(y - x \log y)}{x(x - y \log x)}$