17U227

(Pages

SECOND SEMESTER B.C.A. DEGRE

(Supplementary/In (CUCBCS) CC15U BCA2 C04 - NUMER (Complementary Cour

(2015, 2016 ad

Time: Three hours

Part A

Answer *all* questions. Each question carries one mark

- 1. Define the relative error in computation.
- 2. If x_n is the n^{th} iterate, then the Newton-Raphson formula is
- theorem.
- 4. Define the augmented matrix for the system of equation AX = B.
- 5. In triangularization method the coefficient matrix is decomposed into the product of which type of matrices.
- 4 in matrix form.
- 7. If f(2) = 4, f(2.5) = 5.5 find f(2.2) using Lagrange's interpolation.
- 8. Show that $\mu \delta = \frac{1}{2} (\Delta + \nabla)$.
- 9. Write forward difference table for the following data:

X	10	20
У	1.1	2.0

10. Using Euler's method find y(0.1) given that $\frac{dy}{dx} = \frac{y-2x}{y}$, y(0) = 1.

Part B Answer *all* questions. Each question carries two marks

11. Find a real root of the equation $x^3 - 2x - 5 = 0$ by the method of false position in two stages.

s: 3)	Name:
	Reg.No
EE EXAMINA	TION, APRIL 2018
Improvement)	
SS-UG)	
RICAL METH	ODS IN C
rse: Mathematic	cs)
dmissions)	
	Maximum: 80 Marks

3. method is based on the repeated application of the intermediate value

6. Write the system equation $x_1 + x_2 + x_3 = 1$, $4x_1 + 3x_2 - x_3 = 6$, $3x_1 + 5x_2 + 3x_3 = 6$

30	40
4.4	7.9

(10 x 1 = 10 Marks)

Turn Over

- 12. Solve the equations x + 4y z = -5, x + y 6z = -12, 3x y z = 4 by Gauss elimination method.
- 13. If f(0) = 0, f(1) = 1, f(2) = 20 find f(x) using Lagrange's interpolation formula.
- 14. Given that $e = 2.72, e^2 = 7.39, e^3 = 20.09, e^4 = 54.6$, then find $\int_0^4 e^x dx$ by

Simpson's rule.

15. Write the fourth order Runge Kutta formula.

 $(5 \times 2 = 10 \text{ Marks})$

Part C

Answer any *five* questions. Each question carries four marks

16. Apply Cramer's rule to solve the equations

$$x_1 + 2x_2 - x_3 = 2$$
, $3x_1 + 6x_2 + x_3 = 1$, $3x_1 + 3x_2 + 2x_3 = 3$.

17. Evaluate $\frac{1}{N}$ to 3 decimal places by Newton's iterative method. Hence find the value of $\frac{1}{19}$. 18. Using Newton's forward formula, find the value of f(1.02) if

х	1.0	1.1	1.2	1.3	1.4
У	1.841	1.891	0.932	0.964	0.985

19. Given that $y_3 = 2$, $y_4 = -6$, $y_5 = 8$, $y_6 = 9$ and $y_7 = 17$. Calculate $\Delta^4 y_3$.

20. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Romberg's method. Hence obtain an approximate value for π .

21. Given $\frac{dy}{dx} = x + y$, y(1) = 0 then find y(1.1) using Taylor series method.

22. Find y'(0) and y''(0) from the following table :

X	0	1	2	3	4	5
У	4	8	15	7	6	2

23. Solve the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40 by Gauss Jordan method.

(5 x 4 = 20 Marks)

Part D

Answer any five questions. Each question carries eight marks

24. Write the algorithm of Bisection method and using it, find a positive root of

x - cosx = 0.

25. Using LU decomposition method ,solve the equations

$$x_1 + x_2 + x_3 = 1, 4x_1 + 3x_2 - x_3 = 6, 3x_1 + 5x_2 + 3x_3 = 4.$$

26. Find the inverse of $\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$ by Gauss Jordan method.

27. Evaluate $\int_0^1 \frac{dx}{1+x}$ by Gaussian Quadrature formula.

29. Use 4^{th} order Runge-Kutta method to find y for x = .2 in steps of 0.1

given that
$$\frac{dy}{dx} = x + y^2$$
, and $y(0) =$

30. Show that (1) $\Delta = \frac{1}{2}\delta^2 + \delta \sqrt{\left(1 + \frac{1}{4}\delta^2\right)}$

31. Construct the Hermite interpolation polynomial that fits the data:

X	f(x)	f'(x)
0	4	-5
1	-6	-14
2	-22	-17

Also interpolate f(x) at x = .5

17U227

28. Using Modified Euler method find y(0.2), y(0.4) given $\frac{dy}{dx} = y - x^2, y(0) = 1$.

= 1.

(2)
$$\delta = \Delta (1 + \Delta)^{\frac{-1}{2}} = \nabla (1 - \nabla)^{\frac{-1}{2}}.$$

 $(5 \times 8 = 40 \text{ Marks})$