SECOND SEMESTER B.C.A. DEGREE EXAMINATION, APRIL 2018

(Supplementary/Improvement)
(CUCBCSS-UG)

CC15U BCA2 C04 - NUMERICAL METHODS IN C

(Complementary Course: Mathematics)
(2015, 2016 admissions)
Time: Three hours
Part A
Answer all questions. Each question carries one mark

1. Define the relative error in computation.
2. If x_{n} is the $n^{\text {th }}$ iterate, then the Newton-Raphson formula is
3. theorem.
4. Define the augmented matrix for the system of equation $A X=B$.
5. In triangularization method the coefficient matrix is decomposed into the product of which type of matrices.
6. Write the system equation $x_{1}+x_{2}+x_{3}=1,4 x_{1}+3 x_{2}-x_{3}=6,3 x_{1}+5 x_{2}+3 x_{3}=$ 4 in matrix form.
7. If $f(2)=4, f(2.5)=5.5$ find $f(2.2)$ using Lagrange's interpolation.
8. Show that $\mu \delta=\frac{1}{2}(\Delta+\nabla)$.
9. Write forward difference table for the following data:

x	10	20	30	40
y	1.1	2.0	4.4	7.9

10. Using Euler's method find $y(0.1)$ given that $\frac{d y}{d x}=\frac{y-2 x}{y}, y(0)=1$.
(10 x $1=10$ Marks
Part B
Answer all questions. Each question carries two marks
11. Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position in two stages.
12. Solve the equations $x+4 y-z=-5, x+y-6 z=-12,3 x-y-z=4$ by Gauss
elimination method.
13. If $f(0)=0, f(1)=1, f(2)=20$ find $f(x)$ using Lagrange's interpolation formula.
14. Given that $e=2.72, e^{2}=7.39, e^{3}=20.09, e^{4}=54.6$, then find $\int_{0}^{4} e^{x} d x$ by

Simpson's rule.
15. Write the fourth order Runge Kutta formula.

(5 x $2=10$ Marks)

Part C

Answer any five questions. Each question carries four marks
16. Apply Cramer's rule to solve the equations

$$
x_{1}+2 x_{2}-x_{3}=2,3 x_{1}+6 x_{2}+x_{3}=1,3 x_{1}+3 x_{2}+2 x_{3}=3
$$

17. Evaluate $\frac{1}{N}$ to 3 decimal places by Newton's iterative method. Hence find the value of $\frac{1}{19}$.
18. Using Newton's forward formula, find the value of $f(1.02)$ if

x	1.0	1.1	1.2	1.3	1.4
y	1.841	1.891	0.932	0.964	0.985

19. Given that $y_{3}=2, y_{4}=-6, y_{5}=8, y_{6}=9$ and $y_{7}=17$. Calculate $\Delta^{4} y_{3}$.
20. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Romberg's method. Hence obtain an approximate value for π.
21. Given $\frac{d y}{d x}=x+y, y(1)=0$ then find $y(1.1)$ using Taylor series method.
22. Find $y^{\prime}(0)$ and $y^{\prime \prime}(0)$ from the following table :

x	0	1	2	3	4	5
y	4	8	15	7	6	2

23. Solve the equations $x+y+z=9,2 x-3 y+4 z=13,3 x+4 y+5 z=40$ by Gauss Jordan method.

(5x $4=20$ Marks)

Part D

Answer any five questions. Each question carries eight marks
24. Write the algorithm of Bisection method and using it, find a positive root of

$$
x-\cos x=0
$$

25. Using LU decomposition method, solve the equations

$$
x_{1}+x_{2}+x_{3}=1,4 x_{1}+3 x_{2}-x_{3}=6,3 x_{1}+5 x_{2}+3 x_{3}=4
$$

26. Find the inverse of $\left[\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right]$ by Gauss Jordan method.
27. Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by Gaussian Quadrature formula.
28. Using Modified Euler method find $y(0.2), y(0.4)$ given $\frac{d y}{d x}=y-x^{2}, y(0)=1$.
29. Use $4^{\text {th }}$ order Runge-Kutta method to find y for $x=.2$ in steps of 0.1

$$
\text { given that } \frac{d y}{d x}=x+y^{2}, \text { and } y(0)=1
$$

30. Show that (1) $\Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{\left(1+\frac{1}{4} \delta^{2}\right)} \quad$ (2) $\delta=\Delta(1+\Delta)^{\frac{-1}{2}}=\nabla(1-\nabla)^{\frac{-1}{2}}$.
31. Construct the Hermite interpolation polynomial that fits the data:

x	$\mathrm{f}(\mathrm{x})$	$f^{\prime}(x)$
0	4	-5
1	-6	-14
2	-22	-17

Also interpolate $f(x)$ at $x=.5$

