........................

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, APRIL 2018

 (CUCBCSS - UG)Mathematics - Complementary course

CC17U BCA2 C04 - OPERATIONS RESEARCH

(2017 - Admissions Regular)
Time: Three Hour

Part - I

Answer all questions. Each question carries 1 mark

1. What is the nature of the objective function of an LP problem?
2. Explain the necessity of artificial variables.
3. The variables which are assigned the value 0 in an linear programming problem is........
4. Name the method to solve a given transportation problem which gives the most approximate solution.
5. Explain the concept of degeneracy in a transportation problem
6. When do we call a transportation problem balanced?
7. Name the method used for solving an assignment problem.
8. Expand PERT.
9. What do you mean by pessimist time?
10. Define total float.
$(10 \times 1=10$ Marks $)$

Part - II

Answer all questions. Each question carries 2 marks.
11. What are the features of OR?
12. Write the standard form of a mathematical model of Linear Programming Problem.
13. Write the dual of the following LP problem: Maximize $f(x)=3 x_{1}+4 x_{2}$, subject to the constraints $3 x_{1}-x_{2} \leq 2, x_{1}+2 x_{2} \leq 1, x_{1} \geq 0, x_{2}$ unrestricted
14. Explain Big-M method to solve an LP problem.
15. Distinguish between Transportation problem and assignment problem.
16. Explain travelling salesman problem.
17. Describe the method of processing n jobs through 2 machines.
18. Explain network scheduling by an example.

Part - III

Answer any six questions. Each question carries 4 marks
19. Explain two-phase method of solving a L.P.P.
20. Solve the following LPP simplex method

Maximize $z=2 x_{1}+x_{2}$; subject to $x_{1}+x_{2} \leq 3,2 x_{1}-x_{2} \leq 4, x_{1}, x_{2} \geq 0$
21. Explain any one method to obtain an initial basic feasible solution for a transportation problem.
22. Solve the following transportation problem.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
Q_{1}	1	2	2	3	70
Q_{2}	2	4	0	1	38
Q_{3}	1	2	2	5	32
Demand	40	28	30	42	

23. What do you mean by no passing rule in a sequencing algorithm?
24. The following is the cost matrix of assigning 4 clerks to 4 key punching jobs. Find the optimal assignment if clerk 1 cannot be assigned to job 1 . Find the minimum cost

Job

Clerk

--	5	2	0
4	7	5	6
5	8	4	3
3	6	6	2

25. Solve the following assignment problem.

	I	II	III	IV
A	32	26	35	38
B	27	24	26	32
C	28	22	25	34
D	10	10	16	16

26. Construct network diagram. Also find the critical path.

Activity	$1-2$	$1-3$	$2-4$	$3-4$	$3-6$	$4-8$	$5-6$	$5-7$	$6-8$	$7-8$
Time	7	2	1	1	6	3	4	8	1	2

27. Distinguish between PERT and CPM.

Part - IV

Answer any three questions. Each question carries 10 marks.
28. Solve the LPP using dual simplex method

$$
\begin{aligned}
& \text { Minimize } \mathrm{Z}=3 x_{1}+5 x_{2}+2 x_{3} \\
& \text { Subject to } \quad-x_{1}+2 x_{2}+2 x_{3} \geq 3 ; \\
& x_{1}+12 x_{2}+x_{3} \geq 2 ; \\
&-2 x_{1}-x_{2}+2 x_{3} \geq-4 ; \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

29. There are forest areas $F_{1}, F_{2}, F_{3}, F_{4}$ and timber depots D_{1}, D_{2}, D_{3}. The following table gives the produce of each forest areas, the minimum timber required and the cost of transportation per unit of timber from each forest area to each depot. Find the distribution of the entire forest produce for minimum cost of transportation.

	D_{1}	D_{2}	D_{3}.	
F_{1}	3	4	6	100
F_{2}	7	3	8	80
F_{3}	6	4	5	90
F_{4}	7	5	2	120
	110	110	60	

30. The normal cost and duration, crash cost and duration of activities of a project are given. If the overhead cost is Rs. 40 per day, determine the optimal cost schedule.

Activity	Normal cost	Normal Duration	Crash cost	Crash Duration
$(1,2)$	200	3	440	1
$(2,3)$	240	2	320	1
$(2,4)$	100	4	140	3
$(3,4)$	80	5	140	2

31. A small project is composed of seven activities whose time estimates are as follows

Activity	Optimistic time	Most likely time	Pessimistic time
$(1,2)$	1	1	7
$(1,3)$	1	4	7
$(1,4)$	5	3	8
$(2,5)$	1	1	1
$(3,5)$	2	7	14
$(4,6)$	2	5	8
$(5,6)$	3	6	15

Draw the project network and calculate the variance and standard deviation of the project.

Turn Over

