32. A book binder has one printing press, one binding machines, and the manuscripts of a number of a different books .The time required to perform ,the printing and binding operations for each book is shown below.

Books	1	2	3	4	5
Printing time(hr)	30	120	50	20	90
Binding time(hr)	80	100	90	60	30

Determine the order in which books should be processed, in order to minimize the total time required to turn out all the books.

 $(3 \times 10 = 30 \text{ Marks})$

17U226

(Pages: 3

SECOND SEMESTER B.C.A. DEGRE

(CUCBCSS Mathematics – Compl

CC17U BCA2 C04 – OPER

(2017 – Admissio

Time: Three Hours

Part -

Answer *all* questions. Each q

- 1. What is the nature of the objective function of
- 2. Explain the necessity of artificial variables.
- 3. The variables which are assigned the value 0
- 4. Name the method to solve a given transportation problem which gives the most approximate solution.
- 5. Explain the concept of degeneracy in a transportation problem.
- 6. When do we call a transportation problem balanced?
- 7. Name the method used for solving an assignment problem.
- 8. Expand PERT.
- 9. What do you mean by pessimist time?
- 10. Define total float.

Part - II

Answer *all* questions. Each question carries 2 marks.

- 11. What are the features of OR?
- 12. Write the standard form of a mathematical model of Linear Programming Problem.
- 13. Write the dual of the following LP problem: Maximize $f(x) = 3x_1 + 4x_2$, subject to the

constraints $3x_1 - x_2 \le 2, x_1 + 2x_2 \le 1, x_1 \ge 0, x_2$ *unrestricted*

- 14. Explain Big-M method to solve an LP problem.
- 15. Distinguish between Transportation problem and assignment problem.
- 16. Explain travelling salesman problem.
- 17. Describe the method of processing n jobs through 2 machines.
- 18. Explain network scheduling by an example.

3)	Name:
	Reg.No
E EXA	MINATION, APRIL 2018
– UG)	
ementary	/ course
ATION	S RESEARCH
ns Regul	ar)
	Maximum: 80 Marks
[
question	carries 1 mark.
of an LP	problem?
	-
) in an lir	near programming problem is

$(10 \times 1 = 10 \text{ Marks})$

$$(8 \times 2 = 16 \text{ Marks})$$

Turn Over

Part - III Answer any <i>six</i> questions. Each question carries 4 marks.							
19. Explain tw	19. Explain two-phase method of solving a L.P.P.						
20. Solve the	-		-				
	U			$\leq 3, 2x_1$	$-x_2 \le 4, x_1, x_2$	≥ 0	
					ble solution for a t		
22. Solve the	following tra	ansportatior	ı problem.				
	D_1	D_2	D_3	D_4	Supply		
\mathbf{Q}_1	1	2	2	3	70		
Q_2	2	4	0	1	38		
Q3	1	2	2	5	32		
Demand	40	28	30	42			
23. What do y	ou mean by	no passing	rule in a s	equencing	algorithm?		
24. The follow	ving is the co	ost matrix o	f assignin	g 4 clerks	to 4 key punching	jobs. Find the optimal	
assignmen	t if clerk 1 c	annot be as	signed to	job 1. Find	the minimum cos	t	
		J	ob				
		5	2	0			
CI		4 7	5	6			
CI	erk	5 8	4	3			
		3 6	6	2			
25. Solve the following assignment problem.							
	т	п	Ш	IV			

	Ι	II	III	IV
А	32	26	35	38
В	27	24	26	32
С	28	22	25	34
D	10	10	16	16

26. Construct network diagram. Also find the critical path.

Activity	1-2	1-3	2-4	3-4	3-6	4-8	5-6	5-7	6-8	7-8
Time	7	2	1	1	6	3	4	8	1	2

27. Distinguish between PERT and CPM.

 $(6 \times 4 = 24 \text{ Marks})$

Part - IV

Answer any *three* questions. Each question carries 10 marks.

28. Solve the LPP using dual simplex method

Minimize Z =3
$$x_1$$
 + 5 x_2 + 2 x_3
Subject to $-x_1+2x_2 + 2x_3 \ge 3$;
 $x_1+12x_2 + x_3 \ge 2$;
 $-2x_1 - x_2 + 2x_3 \ge -4$;
 $x_1, x_2, x_3 \ge 0$

29. There are forest areas F_1 , F_2 , F_3 , F_4 and timber depots D_1 , D_2 , D_3 . The following table gives the produce of each forest areas, the minimum timber required and the cost of transportation per unit of timber from each forest area to each depot. Find the distribution of the entire forest produce for minimum cost of transportation.

	D_1	D_2	D_3 .
F_1	3	4	6
F_2	7	3	8
F_3	6	4	5
F_4	7	5	2
	110	110	60

30. The normal cost and duration, crash cost and duration of activities of a project are given. If the overhead cost is Rs.40 per day, determine the optimal cost schedule.

Activity	Normal	Normal	Crash	Crash
	cost	Duration	cost	Duration
(1,2)	200	3	440	1
(2,3)	240	2	320	1
(2,4)	100	4	140	3
(3,4)	80	5	140	2

31. A small project is composed of seven activities whose time estimates are as follows

Activity	Optimistic time	Most likely time	Pessimistic time
(1,2)	1	1	7
(1,3)	1	4	7
(1,4)	5	3	8
(2,5)	1	1	1
(3,5)	2	7	14
(4,6)	2	5	8
(5,6)	3	6	15

Draw the project network and calculate the variance and standard deviation of the project.

(3)

Turn Over