Reg. No....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(U.G.—CCSS)

Core Course-Physics

PH 5B 09—ELECTRODYNAMICS—II

(2013 Admissions)

Three Hours

Maximum: 30 Weightage

- Objective questions (Answer all questions):
 - 1 Which among the following is a wrong statement?
 - (a) Electromagnetic waves are produced by accelerating charges.
 - (b) Electromagnetic waves are transverse in nature.
 - (c) Electromagnetic waves travel with the same speed irrespective of the nature of the medium.
 - (d) Electromagnetic waves travel with the velocity of light in vacuum.
 - 2 The Poynting vector is given by:

(a)
$$\frac{\mu_0}{E \times B}$$

(b)
$$\frac{\mu_0}{E \cdot B}$$

(c)
$$\frac{\mathbf{E} \cdot \mathbf{B}}{\mu_0}$$

(d)
$$\frac{\mathbf{E} \times \mathbf{B}}{\mathbf{u}_0}$$

3 In free space, electromagnetic waves propagate at a speed of:

(a)
$$\mu_0 \varepsilon_0$$
.

(b)
$$\sqrt{\mu_0 \epsilon_0}$$

(c)
$$\frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

(d)
$$\frac{1}{\mu_0 \epsilon_0}$$

4 The relation between the vectors magnetic field intensity H, magnetic flux density B and magnetization M is:

(a)
$$B = \mu_0 (H + M)$$
.

(b)
$$H = \mu_0 (B + M)$$
.

(c)
$$M = \mu_0 (H + B)$$
.

(d)
$$B = \mu_0 (H \times M)$$
.

			2		D 0	
5 Th	ne por	wer factor of a circuit is unity. The	nen tl	he impedance o	f the circuit is:	
	(a)	Inductive.				
	(b)	Capacitive.				
	(c)	Resistive.)	(3)		
	(d)	Partially inductive and partially	capa	citive		
6 In an a.c. circuit with voltage V and current I, the power developed is:						
	(a)	VI. (anolasi				
3977 0	(b)	$\frac{VI}{2}$.		er all questions		
		$\frac{\sqrt{1}}{\sqrt{2}}$.		ng oʻra sovaw t		
		Depends on the phase relation		een V and I.		
		aing L, C, R representing inductive which has the dimension of fi			and resistance, respective	У
	(a)	RC.	(b)	$\frac{1}{RC}$.		
	(c)	$\frac{RL}{C}$.	(d)	$\frac{C}{RL}$.	$\frac{\partial d}{\partial x \partial x} (a)$	
8 S	uper	position theorem is based on the	conce	ept of:	3 · A (a)	
•	(a)	Linearity.	(b)	Duality.		
	(c)	Reciprocity.	(d)	Multiplicity.		
State	when	ther the following statements are	TRU	JE or FALSE:	, gapt (e)	
9 N	Iagn	etic monopoles do not exist.				
		eries LR circuit, as the value of lits maximum value.	L/R d	ecreases, it tak	es a longer time for the cur	r
11 A	n ide	eal constant current source has i	nfinit	e resistance.		
12 L	lower	the Q-actor of a circuit, narrow	er is i	ts bandwidth.	magnetization M is:	
		$H = \mu_0 (B + M).$ $B = \mu_0 (H \times M)$			$(12 \times \frac{1}{4} = 3 \text{ weig})$	gł

Short answer questions (Answer all questions):

- 13 Explain Lenz's law in electromagnetic induction.
- 14 Discuss the necessity of the term displacement current in Maxwell's equations.
- 15 What do you mean by intensity of electromagnetic waves?
- 16 Define the terms phase and phase constant of a sinusoidal wave.
- 17 What do you mean by a plane wave and write down the equation for a plane wave.
- 18 Show graphically the decay of charge in a series LCR circuit corresponding to over-damped, critically-damped and damped oscillatory cases.
- 19 What do you mean by wattles current?
- 20 Draw the basic circuit of an a.c. bridge and write down the condition for balance.
- 21 Write down the voltage-current relationship in a purely capacitive and a series RC circuit using *j*-operator.

 $9 \times 1 = 9$ weightage)

Short essay questions (Answer any five questions):

- 22 Obtain an expression for the energy stored in a magnetic field due to the establishment of current.
- 23 Comment on the symmetry of Maxwell's equations in free space.
- 24 Write down the expression for energy density and momentum density of an electromagnetic wave and explain the terms used.
- A coil having $R=120~\Omega$ and L=24~H is connected to a 12 V battery. Determine (i) the time constant of the circuit (ii) current after 0.2 second; and (iii) current after 1 second.
- A pure resistance of 50 Ω is in series with a pure capacitance of 100 μF . The combination is connected to a 100 V, 50 Hz supply. Determine the (i) impedance; (ii) power factor; (iii) voltage across resistance; and (iv) voltage across capacitance.
- Using superposition theorem, calculate the current in each branch of the following network :-

Using Thevenin's theorem, find the current through the 15 Ω resistance in the following figure:—

 $(5 \times 2 = 10 \text{ weighta})$

- IV. Essay questions (Answer any two questions)
 - 29 Obtain the wave equation for the electric and magnetic field vectors E and B in free spa Discuss the term polarization and prove that electromagnetic waves are transverse in natu
 - 30 What is the working principle of a ballistic galvanometer? Obtain an expression relating through a ballistic galvanometer and the corresponding deflection.
 - 31 Discuss the resonance of a parallel resonant circuit. Compare resonance in series and para resonant circuits.

 $(2 \times 4 = 8 \text{ weighta})$