FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(U.G.—CCSS)

Core Course—Mathematics

MM 5B 07—BASIC MATHEMATICAL ANALYSIS

me : Three Hours

Maximum: 30 Weightage

L Objective type questions : Answer all twelve questions :

1 Let
$$f(x) = \frac{3x}{x+1}$$
 for $x \in A = \{x \in \mathbb{R} : x \neq -1\}$. Then range of f is _____.

- 2 Using algebraic properties of R, prove $a \cdot b = 6 \Rightarrow a = 1$.
- 3 State completeness property of R.
- 4 Write the supremum of $S = \left\{\frac{1}{n}; n \in \mathbb{N}\right\}$.
- 5 Give an example of a convergent sequence (x_n) of positive numbers with $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1$.
- 6 Give an example of a Cauchy sequence.
- 7 State True or False. "Every bounded sequence is convergent".
- 8 If (x_n) and (y_n) are two sequences, such that $x_n < y_n$ and $\lim x_n = x$; $\lim y_n = y$. What is the relation between x and y?
- 9 Give an example of a monotonic sequence.
- 10 State True or False. "Every open interval in an open set".
- 11 Prove that $z\overline{z} = |z|^2$.
- 12 Write the multiplicative inverse of the non-zero complex number z = x + iy.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- II. Very short answer questions. Answer all nine questions:
 - 13 Let $f: A \to B$; $g: B \to C$ be functions. Show that if gof is injective then f is injective.
 - 14 Use mathematical induction to prove that $n^3 + 5n$ is divisible by 6.
 - 15 Define \in -neighbourhood of $a \in \mathbb{R}$.
 - 16 Find the supremum and infimum of the set $S = \left\{1 \frac{(-1)^n}{n}; n \in \mathbb{N}\right\}$.
 - 17 If $S \subseteq T \subseteq R$, where $S \neq \phi$, then show that if T is bounded above then $Sup S \leq Sup T$.
 - 18 "A sequence in R can have atmost one limit"—Prove.
 - 19 Using definition of limit, prove that $\lim \left(\frac{1}{n}\right) = 0$.
 - 20 Prove that a Cauchy sequence in bounded.
 - 21 Find arg of z where $z = \frac{i}{-2-2i}$.

 $(9 \times 1 = 9 \text{ weight})$

- III. Short answer questions. Answer any five questions:
 - 22 State and prove Bernoulli's inequality.
 - 23 If $a, b \in \mathbb{R}$, prove that $|a + b| \le |a| + |b|$.
 - 24 Let A and B be bounded non-empty subsets of R and $A + B = (a + b; a \in A, b \in B)$. Prove Sup (A + B) = Sup A + Sup B.
 - 25 State and prove Squeeze theorem.
 - 26 If a sequence $X = (x_n)$ of real numbers converges to a real number x, then prove that subsequence $X' = (x_{nk})$ also converges to x.

- 27 Show that z is either real or purely imaginary iff $(\bar{z})^2 = z^2$.
- 28 Locate the points in the camplex plane for which |z-1| = |z+i|.

 $(5 \times 2 = 10 \text{ weightage})$

Essay questions. Answer any two questions:

- 29 (a) Prove that the set Q of all rational numbers is denumerable.
 - (b) Suppose S and T are sets such that $T \subseteq S$. Prove that z + T is infinite, then S is infinite.
- 30 (a) Prove that the union of arbitrary collection of open subsets is R is open.
 - (b) Give an example to show that the arbitrary intersection of open set is not open.
- 31 (a) If z_1 and z_2 are two non-zero complex numbers such that $|z_1|=|z_2|$ and $\arg{(z_1)}+\arg{(z_2)}=\pi$, then prove that $z_1=-z_2$.
 - (b) Evaluate $\sqrt{1-\sqrt{3}i}$.

 $(2 \times 4 = 8 \text{ weightage})$