	n	0	0	0
2	u	4	T)	n

(Pages: 3)

Name	 4	5

Reg. No....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(UG-CCSS)

Core Course-Mathematics

MM 5B 06-ABSTRACT ALGEBRA

Three Hours

Maximum: 30 Weightage

Part A

Questions from 1 to 12 are compulsory. Each has weight 14.

On Q define '*' by $a * b = \frac{a}{b}$. Is * a binary operation on Q?

State True or False :

"Any two groups of three elements are isomorphic".

- Write a non-trivial proper Subgroup of Klein 4-group.
- Find the subgroup of Z_{12} generated by 3.
- Give an example of a cyclic group having only one generator.
- What is the order of the cycle (1, 4, 5, 7) in the group S_8 ?
- State True or False:
 - "All subgroups of abelian groups are normal".
- The index of the alternating group A_n in the symmetric group S_n , n > 1 is
- Compute the product (12) (16) in Z₂₄.
- ${\mathbb Z}$ Give the number of divisions of zero in ${\mathbb Z}_4$.
- Is the set $\{(1,1),(0,0)\}$ Linearly Independent in \mathbb{R}^2 ?
- Find an element in the span of $\{1-x, x-x^2, 1+x^2\}$.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B (Short Answer Type Questions)

Answer all questions (from 13 to 21).

Each question has weight 1.

For all a, b in a Group G prove that $(a * b)^1 = b^1 * a^1$.

- 14. Find the order of the subgroup of Z_4 generated by 2.
- 15. Determine whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is a permutation of R.
- 16. Define orbits of a permutation.
- 17. Prove that Every permutation σ of a finite set is a product of disjoint cycles.
- 18. Let H be a subgroup of a finite group G. Then prove that the order of H is a divisor of the or G.
- 19. Find all solutions of the equation $x^2 + 2x + 3 = 0$ in \mathbb{Z}_6 .
- 20. Let R be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in z^+$, then prove that R has characteristic 0
- 21. Show that the set of all continuous functions f(x) on [a, b] such that $f\left(\frac{a+b}{2}\right) = 1$, with addition of functions and multiplication by real numbers is not a vector space.

 $(9 \times 1 = 9 \text{ weig}]$

Part C (Short Essay Questions)

Answer any five questions (from 22 to 28). Each question has weight 2.

- 22. Show that the set of all $m \times n$ matrices with real entries under matrix addition is an abelian ξ
- 23. Find all subgroups of Z_{18} and give their subgroup diagram.
- 24. Define even permutation. Check whether the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ is an even permutation?
- 25. Let ϕ be a homomorphism of a group G into a group G^1 . Then prove the following:
 - (1) If e is the identity elements in G, then $\phi(e)$ is the identity element in G^1 .
 - (2) If $a \in G$, then $\phi(a^{-1}) = [\phi(a)]^{-1}$.
 - (3) If H is a subgroup of G, then $\phi(H)$ is a subgroup of G^1 .
- 26. Prove that the cancellation laws hold in a ring R if and only if R has no divisors of 0.
- 27. Prove that every field F is an integral domain. Is the converse true? Justify your answer.
- 28. Let $V = p_4$ be the vector space of polynomials of degree ≤ 4 with usual addition and s multiplication and let $U = \{p(x) \in p_4/p''(1) = 2p^1(1)\}$. Show that U is a subspace of P_4 .

 $(5 \times 2 = 10 \text{ weigh})$

Part D (Essay Questions)

Answer any two questions (from 29 to 31).

Each question has weight 4.

- Describe two different group structures of order 4 and show that one of them is isomorphic to the group of fourth roots of unity under multiplication.
- 30. State and prove Cayley's theorem.
- 31. (a) Define dimension of a vector space.
 - (b) Let U and W be subspaces of R3 defined by:

$$U = \{(x_1, x_2, x_3)/x_1 + x_2 - 2x_3 = 0\} \text{ and } W = \{(x_1, x_2, x_3)/x_1 - 3x_2 + 2x_3 = 0\}. \text{ Find dim U,}$$
 dim W and dim $U \cap W$, by finding their bases and show that $U + W = R^3$.

 $(2 \times 4 = 8 \text{ weightage})$