\qquad

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, APRIL 2019
 (CUCBCSS - UG)
 CC15U BCA2 C04 - NUMERICAL METHODS IN C

Complementary course

(2015, 2016 Admissions Supplementary)
Time: Three Hours
Maximum: 80 Marks

Part A

Answer all questions. Each question carries 1 mark.

1. An equation $\mathrm{f}(\mathrm{x})=0$ which is not algebraic is called \qquad
2. Write the formula for solving an equation using Newton Raphson method.
3. Write the formula for Simpson's $3 / 8^{\text {th }}$ rule.
4. If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+1$, find $\Delta f(x)$ with interval difference 1
5. $E(f(x))=$ \qquad
6. Write the formula for solving a linear system of equations using Cramer's rule
7. Write Newton's interpolation formula.
8. The numbers in the computer can be stored in two forms. Which are they?
9. $\nabla f(x)=$ \qquad
10. Write the Trapezoidal rule of integration.
($10 \times 1=10$ Marks)

Part B

Answer all five questions. Each question carries 2 marks.
11. Find a real root of $x^{3}-x+1=0$ using Bisection method.
12. Set up a procedure for finding the root of 2 using Newton Raphson method.
13. Show that $E=e^{h D}$
14. Find $\int_{0}^{2} x d x$ using Trapezoidal rule taking $\mathrm{h}=0.5$
15. Solve $f(x, y)=x+y$ with $y(0)=1$ to find $y(1)$, taking $h=0.5$ using Euler's method.
($5 \times 2=10$ Marks)
Part C
Answer any five questions. Each question carries 4 marks.
16. Find a real root of $x^{3}+x^{2}-1=0$ using in $[0,1]$ using method of false position.
17. Find a real root of $x^{3}-2 x+5=0$ using Newton - Raphson method.
18. Solve using Cramer's rule.

$$
x+y+z=9 ; 2 x-3 y+4 z=13 ; 3 x+4 y+5 z=40
$$

19. Explain Gauss - Jordan method for solving a linear system of equations.
20. Find the missing term in the table

x	0	1	2	3	4
y	1	3	9	-	81

21. Prove that $\mu=\sqrt{\left(1+\frac{1}{4} \delta^{2}\right)}$
22. Using Simpson's $1 / 3^{\text {rd }}$ rule evaluate $\int_{0}^{1} \frac{1}{x} \mathrm{dx}$
23. Using Lagrange interpolation formula find $y(x)$ as a polynomial.

x	0	1	3	4
y	-12	0	12	24

(5 x $4=20$ Marks)

Part D

Answer any five questions. Each question carries 8 marks.
24. Solve $2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=1$ using Gauss Elimination method.
25. Find the inverse of the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9\end{array}\right]$ using Gauss Jordan method.
26. Using the following table find $f(x)$ as a polynomial in x

x	-1	0	3	6	7
$\mathrm{f}(\mathrm{x})$	3	-6	39	822	1611

27. Find the first two derivatives of $f(x)$ at $x=15$ from the following table.

x	50	51	52	53	54	55	56
y	3.68	3.70	3.73	3.75	3.77	3.80	3.82

28. Solve $\frac{d y}{d x}=x-y, \mathrm{y}(0)=2$; Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using $\mathrm{R}-\mathrm{K}$ method of order 4
29. Solve $\frac{d y}{d x}=-y$ with $y(0)=1$. Using Euler's modified method compute $\mathrm{y}(0.01)$, $y(0.02), y(0.03)$ and $y(0.04)$
30. Solve by triangularization method

$$
2 x+3 y+z=9 ; x+2 y+3 z=6 ; 3 x+y+2 z=8
$$

31. By Gaussian Quadrature formulae evaluate $\int_{2}^{3} \frac{d t}{1+t}$
