29. Solve by dual-simplex method

Maximize
$$z = 2x_1 + x_2$$

Subject to the constraints $x_1 + 2x_2 \le 10$;
 $x_1 + x_2 \le 6$;
 $x_1 - x_2 \le 2$;
 $x_1 - 2x_2 \le 1$;
 $x_1 \ge 0, x_2 \ge 0$.

30. Solve the transportation problem.

	D_1	<i>D</i> ₂	<i>D</i> ₃	D_4	Supply
01	3	7	6	4	5
02	2	4	3	2	2
03	4	3	8	5	3
Demand	3	3	2	2	

31. (a) Explain the Traveling Salesman Problem.

(b) Solve the following Traveling Salesman Problem so as to minimize the cost per cycle.

Jobs	То					
	А	В	C	D	E	
А	_	3	6	2	3	
В	3	_	5	2	3	
C	6	5	_	6	4	
D	2	2	6	_	6	
E	3	3	4	6	_	

32. A small project consists of seven activities for which the relevant data are as given below:

Activity	Preceding Activities	Activity Duration(Days)
А	_	4
В	-	7
C	—	6
D	A, B	5
E	A, B	7
F	C, D, E	6
G	C, D, E	5

(i) Draw the network and find the project completion time.

- (ii) Calculate total float for each of the activities.
- (iii) Draw the time scaled diagram.

(3 x 10= 30 Marks)

18U204

(Pages:

SECOND SEMESTER B.C.A. DEGRE

(CUCBCSS

CC17U BCA2 C04 - OPER

Mathematics - Compl (2017 Admissio

Time: Three Hours

PART

Answer *all* questions. Each q

- 1. Define slack and surplus variables in a Linear
- 2. Define basic feasible solution of a Linear Prog
- 3. What do you understand about artificial variable in an LPP?
- general transportation problem?
- 5. What do you understand about loop in transportation problem?
- 6. What is transhipment problem?
- 7. How do you convert a maximization assignment problem to minimization problem?
- 8. Define critical path of a Network.
- 9. What is idle time on a machine?
- 10. What is no passing rule in sequencing problem?

PART B

Answer all questions. Each question carries 2 marks.

11. Write the following LPP to standard form

Maximize $Z = 3x_1 - 3x_2$

- 12. Explain the two-phase method to solve a Linear Programming Problem.
- 13. Is the number of constraints in the primal and dual problems same? Justify.
- of the transportation problem.
- 15. How does the problem of degeneracy arise in a transportation problem? Explain how does one overcome it?
- 16. Give the mathematical formulation of an assignment problem.

(1)

4)	Name
	Reg. No
E EXAMINAT	ION, APRIL 2019
– UG)	
ATIONS RESEA	ARCH
ementary course	
n onwards)	
	Maximum: 80 Marks
A	
uestion carries 1 1	mark.
Programming Pro	blem.
ramming Problen	1.

4. What is the necessary and sufficient condition for the existence of the feasible solution of the

(10 x 1= 10 Marks)

subject to $x_1 - 2x_2 \le -3$; $4x_1 + x_2 \leq 4;$ x_1 , $x_2 \ge 0$

14. Write algorithm for Vogel's Approximation Method to obtain an initial basic feasible solution

Turn Over

17. Write the following assignment problem as a transportation problem.

	A_1	A_2	A_3
R_1	1	2	3
R_2	4	5	1
R_3	2	1	4

18. What is meant by graphing in Network Analysis?

 $(8 \times 2 = 16 \text{ Marks})$

PART C

Answer any *six* questions. Each question carries 4 marks.

- 19. A company sells two different products A and B. The company makes a profit of Rs. 40 and Rs. 30 per units on products A and B respectively. The two products are produced in a common production prcess and are sold in two different markets. The production process has a capacity of 30000 man hours. It takes 2 hours to produce one unit A and one hour to produce one unit B. The market has been surveyed, and the company officials feels that the maximum number of units of A that can be sold is 8000 and the maximum units of B is 12000 units. Subject to these limitations, the product can be sold in any convex combination. Formulate this problem as a LP Problem.
- 20. Find all basic solutions to the system of linear equations $x_1 + 2x_2 + x_3 = 4$; $2x_1 + x_2 + 5x_3 = 5$, Are the solutions degenerate.
- 21. Use simplex method to solve the LPP:

Maximize $Z = 3x_1 + 2x_2$

Subject to	$4x_1 + 3x_2 \le 12$
	$4x_1 + x_2 \le 8$
	$4x_1 - x_2 \le 8$
	$x_1, x_2 \ge 0$

22. Use Big M- method to solve:

Maximize $z = -x_1 - x_2 - x_3$

Subject to the constraints $x_1 - x_2 - 2x_3 = 2$

$$x_1 + 2x_2 - x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

23. Using North West Corner Rule find the initial basic feasible solution of

	D_1	D ₂	D_3	Availability
0 ₁	3	2	5	6
02	9	1	2	10
03	4	3	1	12
Requirments	9	16	3	
			•	(2)

24. Obtain an initial basic feasible solution to the following transportation problem by matrix

minima method.

	D_1	<i>D</i> ₂	D_3	D_4	Capacity
01	1	2	3	4	6
02	4	3	2	0	8
03	0	2	2	1	10
Demand	4	6	8	6	

25. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

		Job				
		1	2	3	4	5
su	Α	8	4	2	6	1
Persons	В	0	9	5	5	4
Pe	С	3	8	9	2	6
	D	4	3	1	0	3
	Ε	9	5	8	9	5

26. Distinguish between PERT and CPM in network analysis.

27. Use graphic method to find the minimum elapsed total time sequence of 2 jobs and 5 machines, when we are given the following information:

Job 1	{ Sequence {Time (in hours)	A 2
Job 2	{ Sequence {Time (in hours)	С 4

PART D

Answer any three questions. Each question carries 10 marks.

28. Use simplex method to solve,

Minimize
$$z = x_1 - 3x_2 + 2x_3$$

Subject to
 $3x_1 - x_2 + 2x_3 \le 7$
 $-2x_1 + 4x_2 \le 7$
 $-4x_1 + 3x_2 + 8x_3 \le 7$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 7$

(3)

18U204

В	С	D	Ε	
3	4	6	2	
A	D	Е	В	
5	3	2	6	
5	5	2	0	
			$(6 \times 4 = 24)$	Marks)

7; 12; 10; 0.

Turn Over