1100	400	22	(etc.	gara.	gж
(A SEE	ഗ			T 4
18	138	-5	₩.		l'a
	2000	•	-	_	

indicate \$4 and their

(P	ag	es	:	3
1/2	us	CO		

Name	 	 	 	*****	
Reg. No	 *****	 	 ••••		

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2016

(CUCBCSS-UG)

Complementary Course

PHY 4C 04—ELECTRICITY, MAGNETISM AND NUCLEAR PHYSICS

Time: Three Hours Maximum: 64 Marks

Section A (One word)

Answer all questions.

Each question carries 1 mark.

1.	Two wires of equal lengths, one of copper and other of manganin have same resistance. The thicker wire is
2.	Trajectory of a charged particle in a uniform electric field is ————.
3.	In a semiconductor detector the p-n junction is ———— biased.
	Giran of a surplant is of the order of
5.	The exchange particle in the electromagnetic force is
6.	The magnetic substance when placed in a magnetic field moves from stronger part of the magnetic field to weaker part is called ———————————————————————————————————
7.	Aluminum and manganese are magnetic substances.
8.	One a.m.u. = MeV.
9.	The particle responsible for carrying away the missing energy and momentum in a nuclear process is ———.
10.	The first antiparticle found was
	$(10 \times 1 = 10 \text{ marks})$

Section B (Short answer questions)

Answer all questions.

Each question carries 2 marks.

- 11. State Coulomb's law in vector form and prove that, $F_{12} = -F_{21}$, where the letters have their usual meaning.
- 12. Deduce the expression for electric field at a distance r from a uniformly charged spherical shell. What information do you gather from the result?
- 13. Why is manganin used for making standard resistors? Give two reasons.

Turn over

- 14. A magnetic needle is placed on a cork floating in still lake in the northern hemisphere. Does this needle together with cork move towards the north of the lake?
- 15. Distinguish between Type I and Type II superconductors.
- 16. Draw a graph showing the variation of binding Energy per nucleon with mass number of different nuclei. Mark the regions, where the nuclei are (i) prone to fusion; (ii) prone to fission; and (iii) most stable.
- 17. What are Leptons? Discuss the decay modes of Leptons.

 $(7 \times 2 = 14 \text{ marks})$

Section C (Paragraph questions)

Answer any two questions. Each question carries 4 marks.

- 18. Derive the expression for the capacitance of a parallel plate capacitor with a dielectric medium of dielectric constant K between its plates. Obtain also the expression for the energy stored in the to been income electric field in
- 19. With the help of a neat diagram and necessary theory, explain how resistance a resistor can be determined using a potentiometer.
- 20. An alpha particle and a beta particle are entering normally into a strong magnetic field with equal velocity. With necessary theory and equations explain the nature of the trajectories of these particles on entering the field.
- 21. Distinguish between nuclear fission and nuclear fusion. Give an equation for each process. Comment on the energy released in each case.
- 22. Discuss the quantum numbers involved in the classification of elementary particles.

 $(2 \times 4 = 8 \text{ marks})$

Section D (Problems)

Answer any three questions. Each question carries 4 marks.

- 23. The electric potential V(x) in a region along x-axis varies with distance x (in meters) according to relation $V(x) = 4x^2$. Calculate the force experienced by I μ C charge placed at a point x = 1 m.
- 24. At room temperature (27°C), the resistance of heating element is 100 Ω . What is the temperature of the element, if the resistance is found to be 117 Ω ? Given that the temperature coefficient of the material of the resistor is 1.70×10^{-4} C⁻¹.
- 25. Two tangent galvanometers having equal radius of coils are connected in parallel to an electric cell. The ratio of currents in the galvanometer is 1:2 and respective mean deflections are 30° and 45°. Compare the ratio of number of turns of tangent galvanometer.

- 26. After certain lapse of time, the fraction of radioactive polonium undecayed is found to be 12.5% of the initial quantity. What is the duration of this time if half life of uranium is 138 days?
- 27. Calculate the (i) mass defect ; (ii) binding energy ; and (iii) binding energy per nucleon for ${}_6\mathrm{C}^{12}$ nucleus. Nuclear mass of ${}_6\mathrm{C}^{12}$ = 12.0000 a.m.u., mass of hydrogen nucleus = 1.007825 a.m.u. and mass of neutron 1.008665 a.m.u.

 $(3 \times 4 = 12 \text{ marks})$

Section E (Essays)

Answer any two questions.

Each question carries 10 marks.

- 28. Explain the construction, theory and working of a Tangent Galvanometer. How is it used for the measurement of current?
- 29. With a neat diagram and necessary theory describe the working of a cyclotron accelerator.

 Obtain the expression for kinetic energy of the accelerated ion and explain how it can be improved.

 Also discuss the limitations
- 30. (a) In the realm of elementary particles discuss the conservation laws related to symmetry operations.
 - (b) Classify various types of quarks and list their properties. Write the quark structures of proton and neutron.

 $(2 \times 10 = 20 \text{ marks})$