C	E	1	9	0
	6)		0	v

(Pages: 3)

Name.	

Reg.	No		

FOURTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, MAY 2016

Core Course—Physics

PH 4B 07—ELECTRODYNAMICS—I

		FII 4B 07—	ELECIA	ODINAMICS—I	
Time : Three H	lours				Maximum: 30 Weightage
	The s	symbols used in this qu	uestion pa	per have their usual	meanings.
			Section	A sometiment	
I. Objectiv	ve type	questions. Each questi	on carries	a weightage of 1/4.	• Manager 11
Che	oose the	correct alternative fro	m the give	en list:	
1	div Cu	ırl E =			
	(a)	Zero.	(b)	$ abla^2$ B.	
	(c)	Infinity.	(d)	None above.	
2	The D	isplacement vector D =			
	(a)	$\varepsilon_0 \mathbf{E} + \mathbf{P}$.	(b)	ε, χ, Ε.	
	(c)	$\varepsilon_0 \partial \mathbf{E}/\partial t$.	(d)	$1+\chi_e$.	
3	V.B =	0 implies.	g of a City	a wisem doubledby	
	(a)	B is always zero.	(b)	B is a constant.	
	(c)	B is irrotational.	(d)	B is solenoidal.	
4	The m	agnetic susceptibility	of a diama	gnetic material is:	
	(a)	Zero.	(b)	Less than zero.	
	(c)	Greater than zero.	(d)	Complex.	
Fill	in the b	olanks:			notages ada
5	The va	alue of permittivity of a	air is ——		
6	The ge	eneral solution of one d	limensiona	al Laplace's equation	is a ———.
7	The eq	uation connecting Pol	arization a	and susceptibility is -	A VENEZUE A
8	The fie	eld outside a current ca	arrying sol	enoid is	T mainaba in the

Give very brief answers:

- 9 Write down the expression for flux of a vector.
- 10 Give differential form of Ampere's law.
- 11 Name the force experienced by a moving charge due to a magnetic field.
- 12 Give an example for a ferromagnetic material.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Section B

- II. Answer all nine questions. Each question carries a weightage of 1:
 - 13 What is a Gaussian surface?
 - 14 Show that electric potential obeys superposition principle.
 - 15 State 2nd Uniqueness theorem.
 - 16 Define a linear Dielectric. Give an example.
 - 17 What are the boundary conditions for D.
 - 18 When a bar magnet is broken into 2 equal parts each part becomes a new magnet. Explain it on the basis of vanishing divergence of B.
 - 19 What is Physical significance of the equation $\nabla x \mathbf{E} = 0$.
 - 20 Define magnetization .What is its unit?
 - 21 How is Magnetic susceptibility related to permeability?

 $(9 \times 1 = 9 \text{ weightage})$

Section C

- III. Answer any five questions. Each question carries a weightage of 2:
 - 22 Find the electric field due to a uniformly charged solid cylinder both inside and outside the Cylinder.
 - 23 Derive the equation for the capacitance of a Spherical capacitor.
 - 24 A point charge q is situated at a distance r from the centre of a grounded conducting sphere of radius R. Find the potential inside and outside the sphere using the method of images
 - 25 Find the minimum kinetic energy of a proton which would encircle the earth along the equator. Assume the radius of earth = 6,400 km and $B_{\rm H}$ = 4 × 10⁻⁵ Tesla. Mp = 1.7 × 10⁻²⁷kg.
 - $26\,\,$ Find the magnetic flux density of a square wire loop of side $10\,\mathrm{cm}$, carrying $1\,\mathrm{Amp}$ at its centre
 - $\,$ 27 Explain how the concept of vector potential is introduced in magnetostatics. What is its advantage $\,$?
 - 28 Derive the equation of field due to a magnetised object.

 $(5 \times 2 = 10 \text{ weightage})$

Section D

- IV. Answer any two questions. Each question carries a weightage of 4:
 - 29 Derivean expression for energy of a charged capacitor. Show that the dielectric in between the plates of a parallel plate capacitor experiences a force and derive an equation for it.
 - 30 Definethe terms 'boundary condition'. Derive boundary conditions in magneto statics and compare them with electrostatic boundary conditions.
 - 31 Derive Clausius-Mossotti equation.

 $(2 \times 4 = 8 \text{ weightage})$