92247		(Pages: 3)	Name
		engs women A model + a "	Reg. No
,	THIRD SEMESTER B.Sc.	DEGREE EXAMIN	ATION, NOVEMBER 2015
		(CUCBCSS—UG)	1 1 I in multiment of the sound
	Con	re Course—Mathemati	CS C THE CONTROL OF T
	MAT 3B 03—CAL	CULUS AND ANALY	TIC GEOMETRY
ne :	: Three Hours		Maximum: 80 Mar
		Part A	
	Objective t	type: Answer all twelve	uestions.
1.	The natural logarithm is the fur	nction given by ———	Talled whether State Commence of the Commence
2.	$\lim_{x \to 2} \frac{x+2}{x^2 - 4} =$		
3.	The hyperbolic secant is defined	as ———.	
4.	The sequence $\{a_n\}$ diverges to i	nfinity if ———.	
5.	If $ r < 1$, the geometric series a	$+ ar + \dots ar^{n-1} + \dots co$	nverges to ———.
6.	Suppose that $a_n > 0$, and $b_n > 0$	for an \geq N. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c >$	• 0, then
7.	The Maclaurin series of $f(x) = s$	$\sin \frac{x}{2}$ is	ed refer at a consideration of the first and the first at

8. The first two terms in the expansion of $f(x) = e^x \cos x \frac{n!}{r!(n-r)!} as a$ Maclaurin series

 $(12 \times 1 = 12 \text{ marks})$

Turn over

9. The Taylor series expansion of f(x) about a point x = a is —

The eccentricity of the conic section $r = \frac{1}{1 + \cos \theta}$ is

The standard form of the ellipse with foci (±8,0) is -

The centre of the circle $r = -2\cos\theta$ is -

Part B (Short Answer type)

Answer any nine questions.

- 13. Express the logarithm in $\left(\frac{1}{125}\right)$ in terms of In 5 and In 7.
- 14. Express the number e as a limit.
- 15. Find $\lim_{x\to\infty} x\sin\frac{1}{x}$.
- 16. Determine whether $\sum_{n=1}^{\infty} \frac{n+1}{n}$ converges or diverges?
- 17. Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$ converge or diverge?
- 18. Determine whether the Alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$ converges or diverges?
- 19. Define power series representation of a function.
- 20. Find the power series representation of $f(x) = \frac{1}{1-x}$.
- 21. Find the first two terms in the expansion of $f(x) = \cos x$ at x = 0.
- 22. What is the polar equation of a conic with eccentricity e?
- 23. Find the eccentricity of the ellipse $2x^2 + y^2 = 4$.
- 24. Sketch the circle $r = 4 \cos \theta$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Answer Type)

Answer any six questions.

- 25. Define Hyperbolic function.
- 26. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \dots + \frac{1}{n} + \dots$ converge or diverge?

Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$.

- Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$ converge or diverge?
- Define Maclaurin series expansion of a function. Expand $f(x) = \sqrt{x+1}$ about a point a = 0.
- Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-2)^2}{10^n}$.
- What is a parametrisation of a curve in xy plane? Give some typical parametrisation for lines, circles, parabolas, ellipses and hyperbolas.
- Find the eccentricity and directrix of the parabola $r = \frac{25}{10 + 10 \cos \theta}$. Also sketch the parabola.

Find the polar equation of the conic section:

- (i) $r\cos\theta = 2, e = 2$.
- (ii) $r\cos\theta = -4, e = 1$.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions.

- (i) Consider the series $a_n = \frac{\frac{n}{2^n}, n \text{ odd}}{\frac{1}{2^n}, n \text{ even}}$. Does $\sum a_n$ converge?
- (ii) Does $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ converge?
- Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2. Does this series converges to $\frac{1}{x}$?
- Define eccentricity of a conic section. Classify the conic section by eccentricity. How are an ellipses shape and eccentricity related? Give examples.

 $(2 \times 10 = 20 \text{ marks})$