T	wet	-	0	0	0
2 1		-	07	вb	h
D	1	1	2	v	U

(P	2	o	0	S	2
17	a	×	C	3	60

Name	 *********	
Reg No		

FIFTH SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2016

(CUCBCSS-UG)

BCA 5B 11—COMPUTER ORGANIZATION AND ARCHITECTURE

Time: Three Hours Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

1.	The opcode specifies ———.
2.	A collection of lines that connects several devices is called ———.
3.	ADD X, Y is an example for ——— addressing mode.

- 4. Cahe memory acts between and .5. MIMD stands for .
- 6. Interrupts initiated by instructions are called ————
- 7. The CPU register used for ALU operation is ———.
- 8. A k bit field can specify registers.
- 9. In reverse polish notation, expression A * B + C * D is written as ———.
- 10. A stack organized computer uses instruction of ——— addressing.

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer all questions.

Each question carries 2 marks.

- 11. What do you mean by stacks?
- 12. Write short note on Instruction Format.
- 13. What is EEPROM?
- 14. Define Interrupt cycle.
- 15. Write short note on MIMD.

 $(5 \times 2 = 10 \text{ marks})$

Turn over

Part C

Answer any **five** questions. Each question carries 4 marks.

- 16. Explain the addressing modes with example.
- 17. Explain Booth multiplication algorithm.
- 18. Explain how ROM can be classified.
- 19. Discuss direct and set associative mapping techniques.
- 20. List out the basic computer registers and explain the working.
- 21. Explian Daisy Chaining priority interrupt.
- 22. Explain the use of array processor.
- 23. Explain Data Hazard.

 $(5 \times 4 = 20 \text{ marks})$

Part D

Answer any five questions. Each question carries 8 marks.

- 24. Explain the functional units of computer.
- 25. Explain floating-point arithmetic operation.
- 26. Explain data transfer and manipulation instructions.
- 27. Discuss various memory mapping techniques.
- 28. Explain about DMA structure.
- 29. Explain vector processing in detail.
- 30. Explain the need and working of dynamic pipeline.
- 31. Explain the condition and solutions for cache coherence problem.

 $(5 \times 8 = 40 \text{ marks})$

Take umi