D	-	-	-	-	-
		1	т.	4	•,,
	•	•		TB	

(Pages: 3)

Name....

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCBCSS-UG)

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

- 1. Define a countable set.
- 2. What do you mean by trichotomy law of real numbers?
- 3. State Bernoulli's inequality.
- 4. Find all x satisfying |x-1| < |x|.
- 5. State the completeness property of the set of real numbers.
- 6. What are the conditions for a subset of real numbers to be an interval?
- 7. If a > 0 find $\lim_{n \to \infty} \left(\frac{1}{1 + na} \right)$.
- 8. State Squeeze theorem for limit of sequences.
- 9. Give the divergence criteria for a sequence of real numbers.
- 10. Find Arg(z) if z = -1 i.
- 11. Define contractive sequence.
- 12. Find the exponential form of $(\sqrt{3} i)^6$.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

- 13. Verify that the set of all integers Z is denumerable.
- 14. If $a \ge 0$ and $b \ge 0$, prove that a < 6 if and only if $a^2 < b^2$.
- 15. State and prove arithmetic-geometric mean inequality.

Turn over

- 16. Define infimum of a set. If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, prove that inf (S) = 0.
- 17. If t > 0 prove that there is an n_t in N such that $0 < \frac{1}{n_t} < t$.
- 18. State and prove the betweenness property of irrational numbers.
- 19. Determine the set A of all x satisfying |2x+3| < 7.
- 20. Test the convergence of the sequence (x_n) if $x_n = \frac{\sin n}{n}$.
- 21. Define Cauchy sequence. Find a sequence (x_n) which is not Cauchy such that $\lim_{n \to \infty} |x_n x_{n+1}| = 0$.
- 22. Prove that every convergent sequence of real numbers is a Cauchy sequence.
- 23. Show that subsequence of a converging real sequence always converge to the same limit.
- 24. State and prove Bolzano-Weierstrass theorem.
- 25. Find all values of $(-27 i)^{\frac{1}{3}}$.
- 26. Prove that $\mid z_1 z_2 \mid \geq \parallel z_1 \mid \mid z_2 \parallel$ for all $z_1, z_2 \in \mathbb{C}$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any six out of nine questions.

Each question carries 7 marks.

- 27. Show that the unit interval [0,1] is uncountable.
- 28. Prove that there is a real x whose square is 2.
- 29. If A is any set, prove that there is no surjection of A on to the set $\mathcal{P}(A)$ of all subsets of A. Deduce that power set of natural numbers is uncountable.
- 30. If $I_n = [\alpha_n, b_n], n \in \mathbb{N}$ is a nested sequence of closed and bounded intervals, prove that there is a real number which lies in I_n for all n.
- 31. Sate and prove monotone convergence theorem for a sequence.
- 32. Show that every contractive sequence is convergent.

- 33. Discuss the convergence of the following (x_n) where (i) $x_n = \left(1 + \frac{1}{2n}\right)^n$; (ii) $x_n = \sum_{m=1}^n \frac{1}{m!}$
- 34. State Cauchy's convergence criterion. Use it to test the convergence of $x_n = \sum_{m=1}^{n} \frac{1}{m}$.
- 35. Find the square roots of $\sqrt{3} + i$ and express them in rectangular form.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** out of **three** questions. Each question carries 13 marks.

- 36. (a) State and prove the characterization theorem for intervals.
 - (b) Show that between any two real numbers there is a rational number.
- 37. (a) State and prove the ratio test for the convergence of real sequences.
 - (b) If a > 0 construct a sequence of real numbers which will converge to the square root of a.
- 38. (a) Let $X = (x_n)$ and $Y = (y_n)$ be real sequences that converge to x and y respectively. Prove the following:
 - (i) $\lim (x_n + y_n) = x + y$.
 - (ii) $\lim_{n \to \infty} (x_n y_n) = x y$.
 - (iii) $\lim (x_n y_n) = xy$.
 - (iv) $\lim_{n \to \infty} (cx_n) = cx, c \in \mathbb{R}$.
 - (b) Discuss the convergence of $\frac{n!}{n^n}$

 $(2 \times 13 = 26 \text{ marks})$