4	AM 1	$\Gamma T A$	•	•
			6 1	w
	-71	U3	7 .	O

(Pages:2)

Name:

Reg. No.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCBCSS - UG)

CC15U BCS3 B04- FUNDAMENTALS OF DIGITAL ELECTRONICS

Computer Science - Core Course

(2015 Admission)

Time: Three Hours

Maximum: 80 Marks

PART A

(Answer all questions. Each question carries 1 mark)

- 1. Find the 3's complement of (1121)₃
- 2. Give the truth table for NAND gate.
- 3. ASCII stands for.
- 4. What do you mean by gray code?
- 5. State involution law.
- 6. Write the Boolean function for sum and carry of a full adder.
- 7. How many possible outputs would a decoder have with a 6-bit binary input?
- 8. The characteristic equation of JK flip-flop is
- 9. How many flip-flops are required to produce a divide-by-128 device?
- 10. The terminal count of a 3-bit binary counter in the DOWN mode is?

 $10 \times 1 = 10 \text{ Marks}$

PART B

(Answer all questions. Each question carries 2 marks)

- 11. Explain binary subtraction in two's complement method with an example.
- 12. What do you mean by error correction? Give an example of error correcting codes.
- 13. Simplify F (A, B, C) = $\overline{AB} + B\overline{C} + BC + A\overline{B}\overline{C}$
- 14. Explain Half adder.
- 15. What are the uses of shift registers?

 $(5 \times 2 = 10 \text{ Marks})$

PART C

(Answer any five questions. Each question carries 4 marks)

- 16. Explain various logic gates in detail.
- 17. Write short note on any four digital codes.
- 18. Find the POS of the Boolean expression, $\bar{A}B + A\bar{B} + \bar{A}\bar{C}$

- 19. Discuss multiplexers in detail.
- 20. Write short note on Johnson's counter.
- 21. What are flip flops? Explain SR, D, JK and T flipflops.
- 22. Explain Aynchronous counters in detail.
- 23. Explain the working of Digital to Analog convertors.

 $(5 \times 4 = 20 \text{ Marks})$

PART D

(Answer any five questions. Each question carries 8 marks)

- 24. Perform the following operations.
 - a) Convert (1278.56)₁₀ to hexadecimal
 - b) Convert (10001100.101001)₂ to octal
 - c) Find the 2's complement of (1000) 2
 - d) Subtract (100111)₂ from (110000)₂
- 25. What are the different methods available to simplify Boolean expressions? Discuss with suitable examples.
- 26. Explain the steps to construct AND, OR and NOT gates using universal gates. Draw a logic circuit using only NAND gates to implement the following Boolean expression: Y = AB + C.
- 27. What is the function of a decoder? Explain BCD to 7-segment decoder.
- 28. Explain various shift registers in detail.
- 29. Write notes on Synchronous and Asynchronous up down counters.
- 30. Discuss in detail, the different types of Analog to Digital converters.

 $(5 \times 8 = 40 \text{ Marks})$
