	Reg. No
THIRD SEMESTER B.Sc.	DEGREE EXAMINATION, NOVEMBER 2016
-1 2) are linearly laderandent	(CUCBCSS - UG)
Mathema	atics - Complementary Course
	IAT3 C03- MATHEMATICS
x2 in the direction of the vector	
Time: Three Hours	Maximum: 80 Marks
	PART A
	r all questions (Each carries 1 mark)
1. Define Bernoulli equatio	
2. Check for exactness: $(x^3 + 3xx^2) dx + 3xx^2 dx$	$(3x^2y + y^3)dy = 0.$
3. What is the order and de-	gree of the differential equation $y'' - (y')^3 + 4 = 0$.
	[1] 1 11
4. Find the rank of the mat	28. Solve the following system of equation 1 1 1 xir
a = s + v + x	
	$\frac{1}{ A - \lambda I } = 0 \text{ is called } \dots$
6 The eigen values of the r	$ \text{natrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix} $
mindo sono bria	
7. Find $curl \vec{v}$ where $\vec{v} = [$	
$8. (i,j,k) = \dots$	
9. $\operatorname{div}(\operatorname{curl} \vec{v}) = \dots$	
10. Define Solenoidal vector	
11. Write the parametric repr	resentation of the curve $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
12. State Gauss's Divergence	e theorem. We will the arrange of group shrott
	$(12 \times 1 = 12 \text{ marks})$
(6 x 5 = 30 marks)	PART B
	ar any NINE questions (Each carries 2 marks) ctories of the family of curves $y = ce^{-x^2}$.
	eating factor of $y \cos x dx + 3 \sin x dy = 0$.
	entating factor of y cosx $dx + 3 \sin x dy = 0$. $dx + 3 \sin x dy = 0$.
16. Obtain the row equivaler	at canonical matrix C of $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 8 \end{bmatrix}$
	[6 -2 2]
	ix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by reducing it to the normal form.
18. Find the eigen values of	22 32
19. Test for consistency of	f the equations: $2x + 3y = 13$
	5x - 2y = 4
	(1)

- 20. Find the angle between the planes x + y + z = 1 and x + 2y + 3z = 6
- 21. Find a unit vector perpendicular to the vectors [2, 3, 4] and [-2, 1, 1].
- 22. Find $div \ \vec{v}$ where $\vec{v} = xyz\hat{\imath} + 3zx\hat{\jmath} + z\hat{k}$ at (1,2,3).
- 23. Check whether the vectors [2, -3, 4], [1, 2, -1] and [3, -1, 2] are linearly independent or not.
- 24. Find the directional derivative of the function $2xy + z^2$ in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$ at the point (1, -1, 3). $(9 \times 2 = 18 \text{ marks})$

Answer any SIX questions (Each carries 5 marks)

- 25. Solve the differential equation $2xy \frac{dy}{dx} y^2 + x^2 = 0$.
- 26. Solve the equation $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.
- 27. Solve the differential equation (2x 4y + 5)y' + (x 2y + 3) = 0.
- 28. Solve the following system of equations using Cramer's rule: 2x y + 3z = 9

$$x + y + z = 6$$
$$x - y + z = 2$$

- 29. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix}$ and hence obtain A^{-1} .
- 30. Find the tangential and normal acceleration of a body moving along a path with position vector $\mathbf{r}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j}$.
- 31. Find the workdone in moving a particle in a force field given by $\vec{F} = 3xy\hat{\imath} 5z\hat{\jmath} +$ $10x\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- 32. Using Green's theorem, evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 33. Using Divergence theorem, Evaluate $\iint_{S} (7x\hat{\imath} z\hat{k}) \cdot \vec{n} dA$ over the sphere $x^2 + y^2 + z^2 = 4$ $(6 \times 5 = 30 \text{ marks})$

PART D

Answer any TWO questions (Each carries 10 marks)

- 34. Solve the differential equation $x(1-x^2)\frac{dy}{dx} + (2x^2-1)y = ax^3$.
- 35. Solve the system of equations: x + y + 2z = 4

$$2x - y + 3z = 9$$

3x - y - z = 2.

36. Verify Stokes theorem for $\vec{F} = [y, z, x]$ over the paraboloid $z = 1 - (x^2 + y^2)$, z0.

 $(2 \times 10 = 20 \text{ marks})$