15U310	(Pages: 2)	Name:
		Reg. No:
THIRD SEMESTI	ER B.Sc. DEGREE EXAMINA	ATION, NOVEMBER 2016
	(CUCBCSS-UG)	
	Physics- Core Course	

CC15UPH3 B05- MECHANICS (2015 Admission)

(5×4= 20 Mai

Section A

(Answer all questions. Each carriesonemark)

1. What is Coriolis force?

Time: Three Hours

- 2. State work-energy theorem.
- 3. Write the relation between angular momentum and torque.
- 4. Distinguish between elastic and inelastic collision.
- 5. What is central force? Give an example.
- 6. What is escape velocity? What is its value for earth?
- 7. What are holonomic and non-holonomic constraints?
- 8. Show that particles with zero rest mass travels with speed of light.
- 9. State the postulates of special theory of relativity.
- 10. Define a four vector with an example.

 $(10\times1=10 \text{ Marks})$

Maximum: 80 Marks

Section B

(Answerall questions. Each carriestwo marks)

- 11. Explain inertial and non -inertial frames of reference with example.
- 12. Express the force as the negative gradient of potential.
- 13. Obtain an expression for the centre of mass of a uniform thin rod having length L.
- 14. Derive an expression for the orbital velocity of a satellite.
- 15. Derive the D'Alemberts principle.
- 16. Write a note onMinkowski four dimensional space.
- 17. Explain principle of covariance.

 $(7 \times 2 = 14 \text{ Marks})$

Section C

(Answer any five questions. Each carries four marks)

- 18. Deduce the law of conservation of linear momentum with the help of Galilean invariance and conservation of energy.
- 19. What is potential energy curve? Explain potential well.

- 20. Derive the relation for the distance of closest approach in the case of scattering of a proton by a heavy nucleus.
- 21. Derive expressions for the time period and height of geostationary satellite.
- 22. Explain the symmetry properties of space and conservation of linear momentum.
- 23. Using Langrange's equation, derive Newton's second law.
- 24. Explain the consequences of Lorentz transformations.

 $(5\times4=20 \text{ Marks})$

Section D

(Answer any four questions. Each carries four marks)

- 25. Calculate the effective weight of an astronaut ordinarily weighing 60kg when his rocket moves vertically upward with 5g acceleration.
- 26. Show that gravitational force between two masses (m and M) is conservative.
- 27. A gas molecule having a speed of 300m/s collides elastically with another molecule of the same mass which is initially at rest. After the collision the first molecule moves at an angle of 30° to its initial direction. Find the speed of each molecule after collision and the angle made with the incident direction by the recoiling target molecule.
- 28. If earth has mass nine times and radius twice that of the planet mars. Calculate the velocity required by a rocket to pull out of the gravitational force of mars. Escape velocity on the surface of the earth is 11.2km/s.
- 29. Setup Langragian of a simple pendulum and obtain the equation of motion.
- 30. The average lifetime of a muon at rest is 2.21×10⁻⁶s. The muons are found to travel with velocities 0.99c. What will be the average distance which they will be observed to traverse before decaying?
- 31. How fast would a rocket ship have to go relative to an observer for its length to be contracted to 40% of its length when at rest?

(4×4=16 Marks)

Section E

(Answer any two questions. Each carriesten marks)

- 32. Explain the principle of a rocket. Derive an expression for the velocity of rocket at any instant.
- 33. Deduce Kepler's laws using Newton's law of gravitation.
- 34. Derive Langrange's equation of motion from D'Alemberts equation.
- 35. Explain Michelson- Morley experiment. Discuss the importance of negative results of this experiment.

 $(2\times10=20 \text{ Marks})$
