

Time: Three Hours

PART - A

Answer All Questions. Each question carries one mark.

1. If α, β and γ are the roots of the equation $x^{3}-x-1=0$, find the equation whose roots are $\alpha+1, \beta+1$ and $\gamma+1$.
2. Form an equation whose roots are the negatives of the roots of the equation $2 x^{3}-5 x^{2}+7=0$.
3. Give an example of a standard reciprocal equation.
4. State Descarte's rule of signs.
5. Find the rank of the matrix $A=\left[\begin{array}{llll}2 & 4 & 3 & 2 \\ 3 & 3 & 1 & 4\end{array}\right]$
6. If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $a_{i j}=2$, for all i, j. Find the rank of A.
7. Compute the product $E_{21}(p) E_{31}(q)$ of the elementary matrices of order 3 .
8. Find the value of ' p ' if the system of equations $2 x+y=5,4 x+2 y=p$ has infinitely many solution if p is:
(a) 1 (b) 5 (c) 10
9. If λ is a characteristic root of a non-singular matrix A, then characteristic root of A^{-1} is -------
10. Find the parametric equation of a line through the point $(3,-4,-1)$ and parallel to the vector $\hat{\imath}+\hat{\jmath}+\hat{k}$.
11. The name of the surface whose equation is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
12. Find the cylindrical coordinates of the cylinder whose Cartesian equation is $x^{2}+y^{2}=2 x$.
($\mathbf{1 2 \times 1 = 1 2}$ Marks)

Answer any nine Questions. Each question carries 2 marks.

13. Solve the equation $4 x^{4}-8 x^{3}+7 x^{2}+2 x-2=0$ of which one root is $1+i$.
14. If α, β and γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$, find the equation whose roots are $\alpha \beta, \beta \gamma$ and $\alpha \gamma$.
15. If α, β and γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the value of $\sum \frac{1}{\alpha}$.
16. Find the least number of imaginary roots of the equation $x^{9}+5 x^{8}-x^{3}+7 x+2=0$.
17. Find the rank of $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3\end{array}\right]$ by reducing it to its normal form.
18. Test whether the system of equations $\begin{aligned} 2 x-4 y & =3 \\ -3 x+6 y & =-4\end{aligned}$ are consistent.
19. Find the value of k, if the rank of $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & k\end{array}\right]$ is 2 .
20. Find the characteristics roots of $\left[\begin{array}{ll}3 & -4 \\ 2 & -6\end{array}\right]$.
21. Show that the eigen values of a diagonal matrix are the same as its diagonal elements.
22. If $3 \hat{\imath}+4 \hat{\jmath}, 2 \hat{\imath}+3 \hat{\jmath}++4 \hat{k}$ and $5 \hat{k}$ are the vectors representing sides of a parallelepiped at one corner, find its volume.
23. Find the distance of the point $(2,3,0)$ from the plane $3 x+2 y-6 z+9=0$.
24. Evaluate $\int_{-\pi / 4}^{\pi / 4}\left[(\sin t) \hat{\imath}+(1+\cos t) \hat{\jmath}+\left(\sec ^{2} t\right) \hat{k}\right] d t$.
(9×2 = 18 Marks)

PART - C

Answer any six Questions. Each question carries 5 marks.
25. Frame an equation with rational coefficients, one of whose roots is $\sqrt{5}+\sqrt{2}$.
26. If α, β and γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the value of $\left(\alpha^{2}+\beta \gamma\right)+\left(\beta^{2}+\alpha \gamma\right)+\left(\gamma^{2}+\alpha \beta\right)$.
27. Solve the equation $x^{5}-6 x^{4}+7 x^{3}+7 x^{2}-6 x+1=0$.
28. For the matrix A, find non-singular matrices P and Q such that $P A Q$ is in normal
form, where $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$.

$$
x+2 y+z=3
$$

29. Using matrix method solve the system of equations $2 x+5 y-z=-4$
$3 x-2 y-z=5$
30. Show that 4 is an eigen value of $\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$ and find a corresponding eigen vector.
31. State Cayely-Hamilton theorem and verify the Cayely-Hamilton theorem for the matrix
$A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
32. Solve the initial value problem: $\frac{d r}{d t}=-t \mathbf{i}-t \mathbf{j}-t \mathbf{k}, \mathbf{r}(0)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$.
33. Find T, N and κ for the space curve $\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+b t \mathbf{k}$, where $a, b \geq 0$, $a^{2}+b^{2} \neq 0$.
($6 \times 5=30$ Marks $)$

PART - D

Answer any two Questions. Each question carries ten marks.
34. (a) Solve the equation $81 x^{3}-18 x^{2}-36 x+8=0$, whose roots are in harmonic progression.
(b) Solve the cubic equation $x^{3}-9 x+28=0$ by Cardano's method.
35. Using elementary transformations find the inverse of $A=\left[\begin{array}{rrrr}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]$.
36. (a) Find the point of intersection of the line $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z+1}{2}$ and the plane

$$
4 x-y-5 z-4=0
$$

(b) Translate the equation $x^{2}+y^{2}+z^{2}=4 z$ into cylindrical and spherical equations.

