16U406

(Pages:3

FOURTH SEMESTER B.Sc. DEGREE

(Regular/Supplementar (CUCBCSS -CC15U MAT4 B04 – THEORY OF EQUAT CALCUL (Mathematics - Con (2015 Admission

Time: Three Hours

PART - A

Answer All Questions. Each question carries one mark.

- are $\alpha + 1$, $\beta + 1$ and $\gamma + 1$.
- 2. Form an equation whose roots are the negatives of the roots of the equation $2x^3 - 5x^2 + 7 = 0.$
- 3. Give an example of a standard reciprocal equation.
- 4. State Descarte's rule of signs.
- 5. Find the rank of the matrix $A = \begin{bmatrix} 2 & 4 & 3 & 2 \\ 3 & 3 & 1 & 4 \end{bmatrix}$.
- 6. If $A = [a_{ij}]$ is an $m \times n$ matrix and $a_{ij} = 2$, for all i, j. Find the rank of A.
- 7. Compute the product $E_{21}(p) E_{31}(q)$ of the elementary matrices of order 3.
- many solution if *p* is:
 - (*a*) 1 (*b*) 5 (*c*) 10
- is -----
- vector $\hat{i} + \hat{j} + \hat{k}$.
- 11. The name of the surface whose equation is $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$

3)	Name:	•
	Reg. No	
EXAMI	NATION, APRIL 2018	
ry/Improv	ement)	
UG)		
TIONS, N	ATRICES AND VECTOR	
US		
re Course)	
onwards)		

Maximum: 80 Marks

1. If α , β and γ are the roots of the equation $x^3 - x - 1 = 0$, find the equation whose roots

8. Find the value of 'p' if the system of equations 2x + y = 5, 4x + 2y = p has infinitely

9. If λ is a characteristic root of a non-singular matrix A, then characteristic root of A^{-1}

10. Find the parametric equation of a line through the point (3, -4, -1) and parallel to the

12. Find the cylindrical coordinates of the cylinder whose Cartesian equation is $x^2 + y^2 = 2x$. (12 x 1 = 12 Marks)

Turn Over

PART - B

Answer any *nine* Questions. Each question carries 2 marks.

13. Solve the equation $4x^4 - 8x^3 + 7x^2 + 2x - 2 = 0$ of which one root is 1 + i. 14. If α , β and γ are the roots of the equation $x^3 + \alpha x^2 + bx + c = 0$, find the equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\alpha\gamma$. 15. If α , β and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum_{\alpha} \frac{1}{\alpha}$. 16. Find the least number of imaginary roots of the equation $x^9 + 5x^8 - x^3 + 7x + 2 = 0$. 17. Find the rank of $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ by reducing it to its normal form. 18. Test whether the system of equations 2x - 4y = 3-3x + 6y = -4 are consistent. 19. Find the value of k, if the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & k \end{bmatrix}$ is 2. 20. Find the characteristics roots of $\begin{bmatrix} 3 & -4 \\ 2 & -6 \end{bmatrix}$. 21. Show that the eigen values of a diagonal matrix are the same as its diagonal elements. 22. If $3\hat{i} + 4\hat{j}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $5\hat{k}$ are the vectors representing sides of a parallelepiped at

one corner, find its volume.

23. Find the distance of the point (2,3,0) from the plane 3x + 2y - 6z + 9 = 0.

24. Evaluate $\int_{-\pi/4}^{\pi/4} \left[(\sin t)\hat{i} + (1 + \cos t)\hat{j} + (\sec^2 t)\hat{k} \right] dt$.

(9 x 2 = 18 Marks)

PART - C

Answer any *six* Questions. Each question carries 5 marks.

- 25. Frame an equation with rational coefficients, one of whose roots is $\sqrt{5} + \sqrt{2}$.
- 26. If α , β and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of

$$(\alpha^2 + \beta\gamma) + (\beta^2 + \alpha\gamma) + (\gamma^2 + \alpha\beta).$$

27. Solve the equation $x^5 - 6x^4 + 7x^3 + 7x^2 - 6x + 1 = 0$.

28. For the matrix A, find non-singular matrices P and Q such that PAQ is in normal

form, where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

x + 2y + z = 33x - 2y - z = 5

29. Using matrix method solve the system of equations 2x + 5y - z = -4. 30. Show that 4 is an eigen value of $\begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$ and find a corresponding eigen vector. 31. State Cayely-Hamilton theorem and verify the Cayely-Hamilton theorem for the matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

32. Solve the initial value problem: $\frac{dr}{dt} = -t\mathbf{i} - t\mathbf{j} - t\mathbf{k}$, $\mathbf{r}(0) = \mathbf{i}+2\mathbf{j} + 3\mathbf{k}$. 33. Find T, N and κ for the space curve $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j} + bt\mathbf{k}$, where $a, b \ge 0$, $a^2 + b^2 \neq 0.$

PART - D

Answer any *two* Questions. Each question carries **ten** marks.

34. (a) Solve the equation $81x^3 - 18x^2 - 36x + 8 = 0$, whose roots are in harmonic progression.

(b) Solve the cubic equation $x^3 - 9x + 28 = 0$ by Cardano's method.

35. Using elementary transformations find the in

36. (a) Find the point of intersection of the line $\frac{2}{3}$

$$4x - y - 5z - 4 = 0.$$

(b) Translate the equation $x^2 + y^2 + z^2 = 4z$ into cylindrical and spherical equations.

(3)

16U406

 $(6 \times 5 = 30 \text{ Marks})$

everse of
$$A = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$
.
$$\frac{x-1}{3} = \frac{y-2}{1} = \frac{z+1}{2} \text{ and the plane}$$

 $(2 \times 10 = 20 \text{ Marks})$