M	QI	00	0	7
U	O	JU	4	8

(Pages: 3)

Name	31	
1144110		
Des Ma		

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015

(U.G.-CCSS)

Core Course-Mathematics

MM 6B 11—NUMERICAL METHODS

me: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions from this part.

- 1. If f(x) is continuous in [a, b] and f(a) and f(b) are of opposite signs then which of the following is true:
 - (a) There exists exactly one root of f(x) = 0 between a and b.
 - (b) There exist at least one root of f(x) = 0 between a and b.
 - (c) There exist at most one root between a and b.
 - (d) There is no root between a and b.
- 2. Find the second approximation of a real root of $x^2 2x 5 = 0$ using bisection method.
- 3. Write the Newton-Raphson formula.
- 4. Define the central difference operators.
- 5. Write the Newton's backward difference formula.
- 6. Write the Lagrange polynomial of degree 2.
- 7. Write the general form of the unit lower triangular matrix.
- 8. Find the characteristic equation of the matrix

$$\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- 9. $y' = x + y^2$ with y(0) = 1. Find the second approximation $y^{(2)}$ using Picard's method.
- 10. Write Simpson's \(\frac{1}{3} \) rule.
- 11. In Adams-Moulton method formula is used to derive Predictor-corrector formula.
- 12. Write the Milne's corrector formula.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B

Answer all questions from this part.

- 13. Find the second approximation of a real root of the equation $x^3 4x 9 = 0$ using bisection methods.
- 14. Find an iteration formula used to find a root of the equation $x \sin x + \cos x = 0$ us Newton-Raphson formula.
- 15. Using Ramanujan's method obtain the first two convergents of the equation $x + x^3 = 1$.
- 16. Prove that $E = e^{hD}$ where D is the differential operator.
- 17. Write Bessel's interpolation formula.
- 18. Fine the third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 2x$.
- 19. Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ correct to three decimal places Simpson's $\frac{1}{3}$ rule taking h = 0.5.
- 20. Find the unit lower triangular matrix L in the LU decomposition of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 3 & 1 & 2 \end{bmatrix}.$$

21. $\frac{dy}{dx} = 1 + xy$ and y(0) = 1, obtain the Taylor series for y(x).

 $(9 \times 1 = 9 \text{ weigh})$

Part C

Answer any five questions from this part.

- 22. Find a real root of the equation $x^3 x^2 2 = 0$ by Regula-Falsi method.
- 23. Using method of separation of symbols, show that

$$\Delta^{n} u_{x-n} = u_{x-n} u_{x-1} + \frac{n(n-1)}{2} u_{x-2} + \dots + (-1)^{n} u_{x-n}.$$

24. The Population of a town in decennial census was given below. Estimate the population for year 1925:

Year (x) :	1891	1901	1911	1921	1931
Population (y) (in thousands):	46	66	81	93	101

25. Using Lagrange interpolation formula, express the function $\frac{3x^2 + x + 1}{(x-1)(x-2)(x-3)}$ as su partial fractions.

- 26. By Gauss elimination method solve the system of equations 5x y 2z = 142, x 3y z = -30, 2x y 3z = -50.
- 27. Determine the largest eigen value and corresponding eigen vector of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

28. Apply Runge-Kutta method to find an approximate value of y for x = 0.1 taking h = 0.1, if $\frac{dy}{dx} = x + y^2, \ y(0) = 1.$

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any two questions from this part.

29. From the following table, find the value of e 1.17 using Gauss's forward formula.

x	:	1.00	1.05	1.10	1.15	1.20	1.25	1.30
ex	:	2.7813	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

30. Solve the system of equations using factorization method:

$$x + 2y + 3z = 14$$
, $2x + 5y + 2z = 18$, $3x + y + 5z = 20$.

31. Solve the Initial value problem $\frac{dy}{dx} = 1 + xy^2$, y(0) = 1 for x = 0.4 by using Milne's method. Given that

x: 0·1 0·2 0·3 y: 1·105 1·223 1·354.

 $(2 \times 4 = 8 \text{ weightage})$