Name	0.0
	3.3
D N-	

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015

(U.G.—CCSS)

Core Course-Mathematics

MM 6B 09—REAL ANALYSIS

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

- 1. State Maximum Minimum theorem.
- 2. Give an example of a uniform continuous function.
- 3. Define norm of a partition.
- 4. When is a function $f:[a,b] \to \mathbb{R}$ is Riemann integrable?
- 5. Define primitive of f.

6. If
$$J = J = [c, d] \subset [a, b]$$
 and $\varphi_j(x) = \begin{cases} 1, x \in J \\ 0, x \in [a, b] - J \end{cases}$. Find $\int_a^b \varphi_j$?

- 7. Show that $\frac{x}{n} = 0, \forall x \in \mathbb{R}$.
- 8. Evaluate $\lim \frac{nx}{1+(nx)^2}$.
- 9. Find the radius of convergence of $\sum x^n$.
- 10. Define improper integral.
- 11. State True or false. "If f is continuous on $[1, \infty)$ and if $\int_{1}^{\infty} f(x) dx$ converges then $\lim_{x \to \infty} f(x) = 0$.
- 12. What is B(m, n)?

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Turn over

Part B

Answer all questions.

- 13. Define Lipschitz function.
- 14. State an prove Bolzano's intermediate value theorem.
- 15. Show that every constant function on [a, b] is R[a, b].
- 16. Using First form of fundamental theorem prove that $\int_{a}^{b} x dx = \frac{1}{2} \left(b^2 a^2 \right).$
- 17. If $f_n(x) = x^n, x \in [0, 1]$, check whether $f_n(x)$ converges to zero uniformly.
- 18. If (f_n) is a sequence of continuous functions converging uniformly to f, prove that f is continuous
- 19. Show that $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ diverges.
- 20. Define Gamma function.
- 21. Show that B (1, n) = 1/n.

 $(9 \times 1 = 9 \text{ weight})$

Part C

Answer any five questions.

- 22. If f and g are uniform continuous on a subset A of R, then prove that f + g is uniformly contion A.
- 23. Show that $f(x) = xe^x 2$ has a root in [0, 1].
- 24. If $f \in \mathbb{R}[a, b]$ then prove that f is bounded on [a, b].
- 25. State and prove Weierstrass M test for the series.
- 26. If $\int_{a}^{\infty} |f(x)| dx$ converges absolutely then prove that $\int_{a}^{\infty} f(x) dx$ converges.

- 27. Show that $\int_{0}^{1} \frac{1}{x} dx$ diverges.
- 28. Prove the recurrence formula for gamma function.

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any two questions.

- 29. State and prove Squeeze theorem. Also prove that a step function $\phi:[a,b] \to \mathbb{R}$ is in $\mathbb{R}[a,b]$.
- 30. State and prove Cauchy's criterion for uniform convergence.
- 31. Show that $\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$ and $\int_{0}^{\infty} \frac{1}{x^2 + \sqrt{x}} dx$ are convergent.

 $(2 \times 4 = 8 \text{ weightage})$