

ISSN: 2348-1900 **Plant Science Today** <u>http://www.plantsciencetoday.online</u>

Review Article

Larvicidal activity of phytoextracts against dengue fever vector, *Aedes aegypti* - A review

K V Lakshmi^{1,2}, A V Sudhikumar¹, E M Aneesh^{2*}

¹ Department of Zoology, Christ College, Irinjalakuda, Kerala, India

² Communicable Disease Research Laboratory, Department of Zoology, St. Joseph's College, Irinjalakuda, Kerala, India

Article history Received: 12 July 2018 Accepted: 20 September 2018 Published: 12 November 2018 Editor Dr. V. Belavadi, University of Agricultural Sciences, Bangalore, India	Abstract Since <i>Aedes aegypti</i> is considered as the major vector of dengue fever, development of strategies to accomplish improved vector control without much interference in the environment composition are more common. As phytochemicals are now in the run for achieving this goal, this review is a humble attempt to recognize the plant species and their larvicidal efficacy with their inhibitory action on the life cycle of the species of interest, that has been documented through various studies conducted till date. Here we also discuss the synergistic impact of a number of phytoextracts which will provide more efficient control measures for mosquito vectors. All these studies are an exploration for a risk-free vector control tactic to replace the current chemical insecticide application for the betterment of our nature.
	Keywords <i>Aedes aegypti;</i> phytoextracts; larvicidal activity; susceptibility
Publisher Horizon e-Publishing Group	 Citation Lakshmi K V, Sudhikumar A V, Aneesh E M. Larvicidal activity of phytoextracts against dengue fever vector, <i>Aedes aegypti</i> - A review. Plant Science Today 2018;5(4):167-174. https://dx.doi.org/10.14719/pst.2018.5.4.407 Copyright: © Lakshmi <i>et al.</i> (2018). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,

are credited (https://creativecommons.org/licenses/by/4.0/).

*Correspondence E. M. Aneesh M <u>aneeshembalil@gmail.com</u>

Indexing: Plant Science Today is covered by Scopus, CAS, AGRIS, CABI, Google Scholar, etc. Full list at <u>http://www.plantsciencetoday.online</u>

distribution, and reproduction in any medium, provided the original author and source

Introduction

Mosquitoes are considered as the principle vectors of several diseases affecting humans and animals which include dengue, filariasis, chickungunya, Japanese encephalitis, malaria, etc, which result in thousands of deaths every year. Among these, dengue fever is measured as one of the noxious diseases due to its high mortality rate and increasing pervasiveness (1). The rate of recurrence of dengue has grown significantly around the globe in current times. According to recent reports, it is estimated that almost three ninety million people across the world are infected per year of which ninety million are in severe state (2,3). Most of the outbreaks of this disease remain unpredictable and are spreading to new areas, which result in an irrepressible increase in the occurrence of cases. Based on the data collected by National Vector Borne Disease Control Programme in India, dengue fever was first accounted in 1956 from Vellore District in Tamil Nadu and the first dengue haemorrhagic fever outburst was informed from the eastern coast in 1963 (4). Transmission of dengue fever virus to humans is through mosquitoes of the genus *Aedes*, mainly by *Aedes aegypti*, hence known as the most important dengue vector (5).

Research has proved that the most triumphant method for the diminution of such vector borne diseases is the successful control of their vector organisms. Different methods were pursued to implement this purpose from ancient periods including physical, chemical, mechanical, and biological methods, of which chemical method has been demonstrated to be the most effective.

Phytochemicals were used as a crucial mosquito vector managment tactic since 1920's and they were gradually replaced by the synthetic chemicals after the induction of DDT. In an earlier study, it was reported that the plant alkaloids resembling nicotine, anabasine, methyl anabasine and lupinine extracted from a weed Anabasis aphylla, had highly efficient larvicidal activity (6). Literature review in this sector suggested that more than 1200 plants were listed for their potential insecticidal value in the early 90's (7). They almost disappeared from the field after the discovery of the synthetic insecticides such as organochlorides, organophosphates, carbamates, DDT and pyrethroids (8).

Insecticides that contain compounds of high mortality rates have been used worldwide for the management of insect pests including mosquitoes. Even though these insecticides supported intrusions have efficiently controlled mosquito populations for several years, dependence on these limited active ingredients and their profound use has caused progression of resistance against these compounds (9). Studies on resistance development have suggested that, Aedes aegypti has triggered resistance to all insecticides including carbamates, organochlorides, organophosphates and pyrethroids (10). Resistance development and more prominently the environmental catastrophe have compelled the researchers to revert their corridors once again towards phytochemicals for achieving successful devoid vector control of such tribulations.

Phytoextracts

Botanicals are principally secondary metabolites that operate as a means of defence mechanism of the plants to resist continuous selection pressure from herbivore predators and other environmental factors and some of them exhibit natural insecticidal activity as well (11). An assessment of earlier studies gives comprehensive evidence for the utilization of plant products as insecticides against mosquito populations. Extraction and evaluation of phytochemicals from 150 plants were carried out and their larvicidal effects were listed by Hartzeall and Wilcoxon in 1941 (12). In a previous review performed on insecticides derived from plants, covering a period of 1941 to 1953, it was reported that several phytochemicals were in use against mosquitoes for their control (13). Developing resistance against chemical insecticides made this harmless method more popular amongst researchers and common people alike. Present studies are focusing on these phytoextract based vector control strategies and also developing a newer and more effective method called synergy where a combination of more than one compound either of plant products or a combination of plant product and chemical insecticides are used for accomplishing the objective.

Same phytochemicals exhibit different susceptibility status to different mosquito species. Among the key vector genera like *Aedes* and *Culex*, Aedes mosquitoes are less susceptible to insecticides and botanicals (11). Since resistance development and environmental peril have been revealed for conventional insecticides, a range of studies on plant products as the mosquito vector control measures are being carried out by the researchers. Wide array of these natural compounds have been tested for this purpose including thousands of plant species. In this review, the plant extracts that have accounted for larvicidal efficacy against Aedes mosquitoes and their lethal dose are listed (Table 1). Various plants having larvicidal efficacy were subjected to further studies for identification of the chemical compounds which specifically possess larvicidal activity. Many compounds of interest have been recognized and isolated from various plant species of which important ones are listed in Table 2.

To compete with the increasing resistance development in mosquito species, a newer and faster method of vector control has been formulated in which synergistic action of more than one insecticide is exploited in combination with one another to enhance their potency for mosquito control. Studies have proven that the synergistic combination of biological and chemical insecticides yield a promising alternative resolution in vector management (14). At present, many synergistic combinations are under experimentation which includes the synergy of chemical and biological insecticides and mixtures of different phytoextracts alone.

When the leaf extracts of Solidago canadensis and Eugenia jambolana were combined with deltamethrin for the synergistic activity had a synergistic factor of 4.09 and 1.80. They were observed to give more efficient control than the phytoextracts alone (15). Synergistic efficacy of Vitex negundo, Clerodendrum inerme and Gliricidia sepium with Pongamia glabra against Aedes aegypti provided a synergistic factor of 1.90, 1.50 and 1.72 respectively and revealed that synergy of phytoextracts also offer proficient vector control in which only the combinations of phytoextracts were entailed (16).

Table 1: Efficacy of botanical extracts in controlling/reducing the populations of *Aedes aegypti*, a dengue fever vector (LC: Lethal Concentration, ppm: parts per million, mg/L: milligram per liter)

Plant species	Plant families	Plant part	Solvent	Lethal concentrations or biological activity	References
Caulerpa scalpelliformis	Caulerpaceae	Whole	Acetone	LC: 53.7mg/L	(21)
Cannabis sativa	Cannabaceae	Leaf	Ethanol	LC: 5000mg/L	(22)
Codiaeum variegatum	Euphorbiaceae	Leaf	Water	LC: 37,600 mg/L	(23)
Azadirachta indica	Meliaceae	Leaf	Water	LC: 4800 mg/L	(23)
Annona squamosa	Annonaceae	Leaf	Water	LC: 2400 mg/L	(23)
Azadirachita indica	Meliaceae	Seed	Crushed seeds	LC: 100 (59) mg/L	(24)
Angelico glauca	Apiaceae	Seeds	Commercial oils	LC: 52–74 mg/L	(25)
Calophyllum inophyllum	Calophyllaceae	Leaf	Ethyl-acetate fraction	LC: 35.49 mg/L	(26)
Calophyllum inophyllum	Calophyllaceae	Seed	Ethyl-acetate fraction	LC: 8.2 mg/L	(26)
Alnus glutinosa	Betulaceae	Old litter	Polyphenols	LC: 200–400 mg/L	(17)
Abuta grandifolia	Menispermaceae	Fruit	Dichloro methane	LC: 2.6 mg/L	(27)
Feronia limonia	Rutaceae	Leaf	Acetone	LC ₅₀ :57.23 LC ₉₀ :146.21 mg/L	(28)
Alnus glutinosa	Betulaceae	Different aged litter		LC ₅₀ :0.382 g/L	(18)
Cassia obtusifolia	Fabaceae	Seed	Methanol	LC: 40 (51) mg/L	(29)
Cassia tora	Caesalpinaceae	Seed	Methanol	LC:20 (59) mg/L	(29)
Callitris glaucophylla	Cupressaceae	Wood	Steam distilled	LC:0.69 mg/L	(30)
Cassia obtusifolia	Leguminosae	Seed	Chloroform	LC _{50:} 1.4 ppm	(31)
Cassia tora	Caesulpinaceae	Seed	Methanol	LC ₅₀ : 20 mg/l	(31)
Piper retrofractum	Piparaceae	Unripe and ripe fruit		LC ₅₀ :79 ppm	(32)
Curcuma aromatic	Zingiberaceae	Rhizome	Hexane	LC ₅₀ :36.30 ppm	(33)
Rhinacanthus nasutus	Acanthaceae	Root	Petroleum ether	LC ₅₀ :3.93 ppm LC _{90:} 18.51 ppm	(34)
Derris elliptica	Fabaceae	Root	Petroleum ether	LC ₅₀ :11.17 ppm LC ₉₀ :32.22 ppm	(34)
Homalomena aromatica	Araceae	Whole plant	Petroleum ether	LC ₅₀ :40.36 ppm LC _{90:} 77.21 ppm	(34)
Momordica charantia	Cucurbitaceae	Fruit	Hexane	LC ₅₀ :122.45 ppm LC ₉₀ :191.86 ppm	(35)
Ocimum basilium	Lamiaceae	Leaf	Water	LC ₅₀ :.4.66 mg/ml LC ₉₀ :8.74 mg/ml	(36)
Albizzia amara	Fabaceae	Leaf	Water	LC ₅₀ :7.10 mg/mi LC ₉₀ :13.23 mg/ml	(36)
Ageratina adenophora	Asteraceae	Twigs	Acetone	LC ₅₀ :356.70 ppm	(37)
Millingntonia hortensis	Bignoniaceace	Leaf	Aectone	LC ₅₀ :104.70 ppm	(38)
Ocimum sanctum	Labiate	Leaf	Acetone	LC ₅₀ :425.94 ppm	(38)
Citrullus colocynthis	Cucurbitaceae	Leaf	Petroleum ether	LC ₅₀ : 74.57ppm LC ₉₀ : 538.30 ppm	(39)
Coccinia indica	Cucurbitaceae	Leaf	Methanol	LC ₅₀ : 309.46 ppm LC ₉₀ :1330.43 ppm	(39)
Cucumis sativus	Cucurbitaceae	Leaf	Methanol	LC ₅₀ : 492.73 ppm LC ₉₀ : 1824.20 ppm	(39)
Momordica charantia	Cucurbitaceae	Leaf	Methanol	LC ₅₀ : 199.14 ppm LC ₉₀ : 780.10 ppm	(39)
Trichosanthes anguina	Cucurbitaceae	Leaf	Acetone	LC ₅₀ : 554.20 ppm LC ₉₀ : 2235.34 ppm	(39)
Solanum nigrum	Solanaceae	Dried fruit	Hexane	LC50:17.63 ppm LC90:65.22 ppm	(15)
Fius bengahalensis	Moraceae	Leaf	Methanol	LC ₅₀ :70.29 ppm LC ₉₀ :137.23 ppm	(40)
Euodia rideleyi	Rutaceae	Leaf	Ethyl acetate	LC ₅₀ :139.80 ppm LC ₉₀ :203.50 ppm	(41)

Plant species	Plant families	Plant part	Solvent	Lethal concentrations or biological activity	References
Enteromorpha intestinalis	Ulvaceae	Whole plant	Dimethyl sulfoxide (DMSO)	LC ₅₀ :0.0744 mg/ml LC ₉₀ :0.1399 mg/ml	(42)
Dictyota dichotoma	Dictyotaceae	Whole plant	Dimethyl sulfoxide (DMSO)	LC ₅₀ :0.0683 ppm LC ₉₀ :0.1401 ppm	(42)
Ervatamia coronaria	Apocynaceae	Leaf	Benzene	LC ₅₀ : 89.59 ppm LC ₉₀ : 166.04 ppm	(43)
Caesalpinia pulcherrima	Fabaceae	Leaf	Benzene	LC ₅₀ : 136.36 ppm LC ₉₀ : 272.15 ppm	(43)
Mentha piperita	Lamiaceae	Essential oil	Ethanol	LC ₅₀ : 111.9 ppm LC ₉₀ :295.18 ppm	(44)
Morinda citrifolia	Rubiaceae	Leaf	methanol	LC ₅₀ : 277.92 ppm LC ₉₀ :568.18 ppm	(45)
Acalypha alnifolia	Euphorbiaceae	Leaf	methanol	LC₅₀:128.55 ppm LC₅₀:381.67 ppm	(46)
Calotropis gigantean	Asclepiadaceae	Leaf	Ethanol	LC ₅₀ :136.48 ppm LC ₉₀ :327.72 ppm	(47)
Citrus sinensis	Rutaceae	Fruit	Ethanol	LC ₅₀ :342.45 ppm LC ₉₀ :734.98 ppm	(48)
Aloe vera	Liliaceae	Leaf	Petroleum ether	LC ₅₀ :253.30 ppm LC ₉₀ :563.18 ppm	(49)
Sphaeranthus indicus	Asteraceae	Whole plant	Ethyl acetate	LC ₅₀ : 201.11 ppm LC ₉₀ : 865.83 ppm	(50)
Citrullus colocynthis	Cucurbitaceae	Whole plant	Dichloromethane	LC ₅₀ : 515.69 ppm LC ₉₀ : 1725.59 ppm	(50)
Abutilon indicum	Malvaceae	Leaf	Hexane	LC ₅₀ : 261.31 ppm LC ₉₀ :1196.20 ppm	(50)
Cleistanthus collinus	Euphorbiaceae	Leaf	Ethyl acetate	LC ₅₀ : 560.41 ppm LC ₉₀ :2669.86 ppm	(50)
Leucas aspera	Lamiaceae	Leaf	Ethyl acetate	LC₅₀: 483.21 ppm LC₀₀:3195.91 ppm	(50)
Murraya koenigii	Rutaceae	Leaf	Diethyl ether	LC ₅₀ : 511.12 ppm LC ₉₀ :1882.24 ppm	(50)
Hyptis suaveolens	Lamiaceae	Aerial parts	Hexane	LC ₅₀ : 543.66 ppm LC ₉₀ :3546.69 ppm	(50)
Terminalia chebula	Combretaceae	Leaves	Methanol	LC _{50:} 93.24 ppm LC ₉₀ :186.76 ppm	(51)
Senecio laetus	Asteraceae	Root	Methanol	LC _{50:} 22.30 ppm LC ₉₀ : 144.67 ppm	(52)

Table 1: Contd.

Mode of action of phytoextracts

A review on mode of action of phytoextracts revealed that only a few studies have been carried out in this area and there is a lot more to survey (17). However, the studies performed suggest that botanical derivatives have a major effect on the mid gut epithelium and a lesser effect on the gastric area and malpighian tubules (18). Most secondary metabolites of the plants are responsible for the toxic effect which results in insecticidal activity having a wide array of nonspecific molecular targets including proteins (enzymes, receptors, signaling molecules, ionchannels and structural proteins), nucleic acids, bio-membranes, and other cellular components (19). Mode and site of action of some of the secondary metabolites of plants have been identified and are listed in this review (Table 3).

Effects of phytoextracts on *Aedes aegypti* other than larvicidal activity

Apart from larvicidal efficacy, some phytoextracts exhibit characteristics which are involved in the inhibition of mosquito growth and reproductive capacity. Some of the foremost physiological characteristics like developmental period, growth, adult emergence, fecundity, fertility and egg hatching are affected by these factors, and hence they are prevalently known as Insect Growth Regulators (IGRs), which can be incorporated in mosquito vector control. Over one thousand plant species contain such compounds including phytoecdysones, anti-juvenile hormones and

Active Compounds of Interest	Structure	Plant Species	Reference
(5E)-ocimenone	H ₂ C CH ₃ CH ₃ CH ₂ C CH ₂	Tagetes minuta	(53)
Azadirachtin		Azadirachta indica	(54)
Rotenone	$H_{3}C_{O} \leftarrow \begin{pmatrix} H_{0}\\ H_{0}\\$	Derris elliptica	(55)
Capillin	ů (Artemisia nilagirica	(56)
Quassin		Quassia amara	(57)
Neolignans	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ &$	Piper decurrens	(58)
Arborine	N N CH ₃	Glycosmis pentaphylla	(59)

Table 2: Common active compounds of interest isolated from	plant species having larvicidal efficacy
--	--

Table 3: Mode and site of action of some of the secondary metabolites of plants having larvicidal efficacy

Secondary metabolites of plants	Mode and site of action	Reference	
Essential oils	Inhibition of acetylecholinestrase		
Thymol	Inhibition of GABA-gated chloride channel		
Pyrethrin	Sodium and potassium ion exchange disruption		
Rotenone	Inhibition of cellular respiration	(19)	
Ryanodine	Blockage of calcium channels		
Azadirachtin	Hormonal balance disruption, mitotic poisoning		

phyto-juvenoids, which act as IGRs (20). Some of the important botanical extracts comprising growth and development regulating aptitude are listed in Table 4.

Conclusion

A wide variety of flora around the world has been screened against the major dengue fever vector, *Aedes aegypti*, and identified with their ability to control this vector species either by their insecticidal capability or by other means like growth and development inhibition. These phytoextracts have established their potential and could be constructive in the partial or complete replacement of the chemical insecticides, which presently is the major means of vector control. This will be beneficial, ruling out environmental hazards including harmful effects on non-target organisms. One of the chief challenges that could

Table 4 : Effect of selected phytoextracts on growh, development, reproduction, abnormalities, hatch rates and fertility
of Aedes aegypti

Plant species	Solvent/Fraction/compound	Mg/L	Effect on Aedes aegypti	Reference
Azadirachta indica	Water Methyl-tertbutylether/water	100 20	80.5% pupal – adult intermediates mortality and 3% pupal – adult intermediates exhibited protruding wing-sheath and mouthparts	(60)
Albizzia lebbeck	Ethyl alcohol	500	95% reduced adult emergence at day-7	(61)
Calophyllum inophyllum	Ethyl acetate fraction (seeds)	0.22	$EC_{\scriptscriptstyle 50}$ for inhibition of adult emergence	(26)
Cassia holosericea	Ethyl alcohol	1000	Prevented pupation up to day-7	(62)
Cyperus iria	Leaf aged 1 & 2 month	1000	100% reduced emergence	(63)
Ervatamia coronaria	Petroleum ether	1000	Prevented pupation up to day-7	(61)
Melia volkensii	Hexane/Ethyl acetate fraction (1:1)	20	100% mortality during molting and 100% reduced emergence	(63)
Azadirachta indica	Oils from crushed seeds	50	Treated larvae developed to pupae but failed to emerge	(24)
Oligochaeta ramose	Acetone	50	74% larval mortality (larval –pupal intermediate) and 76% reduced emergence	(64)
Rhazya stricta	Partially purified asewerine	100	86% emergence at day-7	(65)
Rhinacanthus nasutus	Petroleum ether fraction	2.9	EC_{50} for inhibition of adult emergence	(26)
Solanum suratense,	Ethyl acetate fraction (leaf)	EC50/2	40% decrease in egg hatching	(65)

get eluded is resistance development in the particular vector species.

This review is a preface to the manipulation of vector management strategies using phytoextracts, which is now in its budding stage, but should come to the public interest so that we can conserve our nature without spreading diseases.

Acknowledgements

The authors are thankful to the Principal, St. Joseph's College, Irinjalakuda for the laboratory facilities provided. We acknowledge UGC Major Research Project (F. No. 42/609/2013 (SR)) and KSCSTE (F. No. 027/SRSLS/2013/CSTE) for providing funds.

Conflict of Interest

The authors declare no conflict of interest.

Authors' contribution

KVL has done the collection of literature and prepared the content of the manuscript, AVS and EMA provided inputs and supervised the work.

References

- 1. World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization. Department of Control of Neglected Tropical Diseases, World Health Organization. Epidemic, Pandemic Alert. Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization; 2009.
- Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF. The global distribution and burden of dengue. Nature 2013;496(7446):504. https://doi.org/10.1038/nature12060
- 3. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS neglected tropical diseases. 2012;6(8):e1760. https://doi.org/10.1371/journal.pntd.0001760
- 4. National Vector Borne disease control programme, Guidelines for Management of Dengue Fever, Dengue Haemorrhagic Fever and Dengue Shock Syndrome. 2008.
- 5. Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. New England Journal of Medicine. 2012;366(15):1423-32. https://doi.org/10.1056/NEJMra1110265
- 6. Campbell FL, Sullivan WN, Smith CR. The relative toxicity of nicotine, anabasine, methyl anabasine, and lupinine for culicine mosquito larvae. Journal of Economic entomology. 1933 Apr 1;26(2):500-9. https://doi.org/10.1093/jee/26.2.500
- 7. McIndoo NE. Plants of possible insecticidal value: a review of the literature up to 1941. US Department of Agriculture, Agricultural Research Administration,

Bureau of Entomology and Plant Quarantine; 1945. https://doi.org/10.5962/bhl.title.122356

- 8. Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. The Indian journal of medical research. 2012 May;135(5):581.
- 9. Brown AW. Insecticide resistance in mosquitoes: a pragmatic review. Journal of the American Mosquito Control Association. 1986 Jun;2(2):123-40.
- 10. Ranson H, Burhani J, Lumjuan N, Black IV WC. Insecticide resistance in dengue vectors. TropIKA. net [online]. 2010;1(1).
- 11. Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH. A review of botanical phytochemicals with mosquitocidal potential. Environment international. 2005;31(8):1149-66. <u>https://doi.org/10.1016/j.envint.2005.03.003</u>
- 12. Hartzell A, Wilcoxon F. A survey of plant products for insecticidal properties. Contrib Boyce Thompson Inst. 1941; 12:127-41.
- Jacobson M. Insecticides from plants: a review of the literature, 1941-1953. United States Department of Agriculture; Washington; 1958.
- 14. Rodrigues AM, De Paula JE, Roblot F, Fournet A, Espíndola LS. Larvicidal activity of *Cybistax antisyphilitica* against *Aedes aegypti* larvae. Fitoterapia. 2005;76(7-8):755-7. https://doi.org/10.1016/j.fitote.2005.08.015
- 15. Raghavendra K, Singh SP, Subbarao SK, Dash AP. Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of *Solanum nigrum* Linn. Indian Journal of Medical Research. 2009 Jul 1;130(1):74.
- 16. Yankanchi S, Yadav OV, Jadhav GS. Synergistic and individual efficacy of certain plant extracts against dengue vector mosquito, *Aedes aegypti*. J. Biopest. 2014 Jan 1; 7:22-8.
- 17. Rey D, Cuany A, Pautou MP, Meyran JC. Differential sensitivity of mosquito taxa to vegetable tannins. Journal of Chemical Ecology. 1999 Mar 1;25(3):537-48. https://doi.org/10.1023/A:1020953804114
- David JP, Rey D, Pautou MP, Meyran JC. Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. Journal of invertebrate pathology. 2000;75(1):9-18. <u>https://doi.org/10.1006/jipa.1999.4886</u>
- Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop protection. 2010 Sep 1;29(9):913-20. <u>https://doi.org/10.1016/j.cropro.2010.05.008</u>
- 20. Varma J, Dubey NK. Prospectives of botanical and microbial products as pesticides of tomorrow. Current science. 1999 Jan 25:172-9.
- 21. Thangam TS, Kathiresan K. Mosquito larvicidal activity of marine plant extracts with synthetic insecticides. Botanica Marina. 1991;34(6):537-40. https://doi.org/10.1515/botm.1991.34.6.537
- 22. Jalees S, Sharma SK, Rahman SJ, Verghese T. Evaluation of insecticidal properties of an indigenous plant, *Cannabis* sativa Linn., against mosquito larvae under laboratory conditions. Journal of Entomological Research. 1993;17(2):117-20.
- 23. Monzon RB, Alvior JP, Luczon LL, Morales AS, Mutuc FE. Larvicidal potential of five Philippine plants against *Aedes aegypti* (Linnaeus) and *Culex quinquefasciatus* (Say). The Southeast Asian journal of tropical medicine and public health. 1994 Dec;25(4):755-9.
- 24. Sinniah B, Sinniah D, Ibrahim J. Effect of neem oil and mosquito larvae. Mosq Borne Dis Bull. 1994; 1:90-3.

- 25. Sharma RN, Deshpande SG, Tungikar VB, Joseph M. Toxicity of natural essential oils to mosquitoes, *Aedes aegypti* and *Culex fatigans*. Geobios. 1994; 21:162-5.
- 26. Pushpalatha E, Muthukrishnan J. Efficacy of two tropical plant extracts for the control of mosquitoes. Journal of applied entomology. 1999 Jul;123(6):369-73. https://doi.org/10.1046/j.1439-0418.1999.00373.x
- 27. Ciccia G, Coussio J, Mongelli E. Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants. Journal of Ethnopharmacology. 2000 Sep 1;72(1-2):185-9. <u>https://doi.org/10.1016/S0378-8741(00)00241-5</u>
- 28. Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B. Effect of *Feronia limonia* on mosquito larvae. Fitoterapia. 2000 Sep 1;71(5):553-5. https://doi.org/10.1016/S0367-326X(00)00164-7
- 29. Jang YS, Baek BR, Yang YC, Kim MK, Lee HS. Larvicidal activity of leguminous seeds and grains against *Aedes aegypti* and *Culex pipiens* pallens. Journal of the American Mosquito Control Association. 2002 Sep;18(3):210-3.
- **30.** Shaalan E, Canyon DV, Faried MW, Abdel-Wahab H, Mansour A. Efficacy of a highly active phytochemical (*Callitris glaucophylla*) against mosquito vectors of dengue and Japanese encephalitis. In: The annual Queensland Health and Medical Scientific Meeting, "Making it better: Encouraging health research and innovation. 2003 Nov 25-26 Brisbane (pp. 25-26).
- **31.** Yang YC, Lim MY, Lee HS. Emodin isolated from *Cassia obtusifolia* (Leguminosae) seed shows larvicidal activity against three mosquito species. Journal of agricultural and food chemistry. 2003 Dec 17;51(26):7629-31. https://doi.org/10.1021/jf034727t
- 32. Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS. Mosquito larvicidal activity of aqueous extracts of long pepper (*Piper retrofractum* Vahl) from Thailand. Journal of Vector Ecology. 2005 Dec 1;30(2):195.
- **33.** Choochote W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, Pitasawat B. Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from *Curcuma aromatica* against *Aedes aegypti* (Diptera: Culicidae). Journal of vector ecology. 2005 Dec 1;30(2):302.
- 34. Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian Journal of Tropical Medicine and Public Health. 2005 Nov 1;36(6):1412.
- 35. Singh RK, Dhiman RC, Mittal PK. Mosquito larvicidal properties of *Momordica charantia* Linn (family: Cucurbitaceae). Journal of Vector Borne Diseases. 2006 Jun;43(2):88.
- 36. Murugan K, Murugan P, Noortheen A. Larvicidal and repellent potential of *Albizzia amara* Boivin and *Ocimum basilicum* Linn against dengue vector, *Aedes aegypti* (Insecta: Diptera: Culicidae). Bioresource Technology. 2007 Jan 1;98(1):198-201. https://doi.org/10.1016/j.biortech.2005.12.009
- 37. Mohan DR, Ramaswamy M. Evaluation of larvicidal activity of the leaf extract of a weed plant, *Ageratina adenophora*, against two important species of mosquitoes, *Aedes aegypti* and *Culex quinquefasciatus*. African Journal of Biotechnology. 2007 Mar 5;6(5):631-8.
- 38. Kaushik R, Saini P. Larvicidal activity of leaf extract of Millingtonia hortensis (Family: Bignoniaceae) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Journal of vector borne diseases. 2008 Mar 1;45(1):66.
- **39.** Rahuman AA, Venkatesan P. Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito

species. Parasitology research. 2008;103(1):133. https://doi.org/10.1007/s00436-008-0940-5

- **40.** Govindarajan M. Larvicidal efficacy of *Ficus benghalensis* L. plant leaf extracts against *Culex quinquefasciatus* Say. European review for medical and pharmacological sciences. 2010; 14:107-11.
- 41. Prathibha KP, Raghavendra BS, Vijayan VA. Evaluation of larvicidal effect of *Euodia ridleyi* Hochr. Leaf extract against three mosquito species at Mysore. Research Journal of Biological Sciences. 2010;5(6):452-5. https://doi.org/10.3923/rjbsci.2010.452.455
- 42. Beula JM, Ravikumar S, Ali MS. Mosquito larvicidal efficacy of seaweed extracts against dengue vector of *Aedes aegypti*. Asian Pacific Journal of Tropical Biomedicine. 2011 Oct 1;1(2): S143-6. https://doi.org/10.1016/S2221-1691(11)60143-3
- 43. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against *Anopheles stephensi, Aedes aegypti*, and *Culex quinquefasciatus* (Diptera: Culicidae). Parasitology research. 2011 Aug 1;109(2):353-67. https://doi.org/10.1007/s00436-011-2263-1
- 44. Kumar P, Mishra S, Malik A, Satya S. Insecticidal properties of *Mentha* species: a review. Industrial Crops and Products. 2011 Jul 1;34(1):802-17. https://doi.org/10.1016/j.indcrop.2011.02.019
- 45. Kovendan K, Murugan K, Shanthakumar SP, Vincent S, Hwang JS. Larvicidal activity of *Morinda citrifolia* L. (Noni) (Family: Rubiaceae) leaf extract against *Anopheles stephensi, Culex quinquefasciatus,* and *Aedes aegypti*. Parasitology research. 2012 Oct 1;111(4):1481-90. https://doi.org/10.1007/s00436-012-2984-9
- 46. Kovendan K, Murugan K, Vincent S. Evaluation of larvicidal activity of *Acalypha alnifolia* Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, *Aedes aegypti* and *Bancroftian filariasis* vector, *Culex quinquefasciatus* (Diptera: Culicidae). Parasitology research. 2012 Feb 1;110(2):571-81. https://doi.org/10.1007/s00436-011-2525-y
- 47. Kovendan K, Murugan K, Kumar KP, Panneerselvam C, Kumar PM, Amerasan D, Subramaniam J, Vincent S. Mosquitocidal properties of *Calotropis gigantea* (Family: Asclepiadaceae) leaf extract and bacterial insecticide, *Bacillus thuringiensis*, against the mosquito vectors. Parasitology research. 2012 Aug 1;111(2):531-44. https://doi.org/10.1007/s00436-012-2865-2
- 48. Kumar S, Warikoo R, Mishra M, Seth A, Wahab N. Larvicidal efficacy of the *Citrus limetta* peel extracts against Indian strains of *Anopheles stephensi* Liston and *Aedes aegypti* L. Parasitology research. 2012 Jul 1;111(1):173-8. <u>https://doi.org/10.1007/s00436-011-2814-5</u>
- **49.** Subramaniam J, Kovendan K, Kumar PM, Murugan K, Walton W. Mosquito larvicidal activity of *Aloe vera* (Family: Liliaceae) leaf extract and *Bacillus sphaericus*, against Chikungunya vector, *Aedes aegypti*. Saudi journal of biological sciences. 2012 Oct 1;19(4):503-9. https://doi.org/10.1016/j.sjbs.2012.07.003
- 50. Tennyson S, Ravindran KJ, Arivoli S. Bioefficacy of botanical insecticides against the dengue and chikungunya vector *Aedes aegypti* (L.) (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine. 2012 Jan 1;2(3): S1842-4. <u>https://doi.org/10.1016/S2221-1691(12)60505-X</u>
- 51. Veni T, Pushpanathan T, Mohanraj J. Larvicidal and ovicidal activity of *Terminalia chebula* Retz. (Family: Combretaceae) medicinal plant extracts against *Anopheles stephensi, Aedes aegypti* and *Culex quinquefasciatus*. Journal of Parasitic Diseases. 2017 Sep 1;41(3):693-702. https://doi.org/10.1007/s12639-016-0869-z

- 52. Ali SI, Gopalakrishnan B, Venkatesalu V. Evaluation of larvicidal activity of *Senecio laetus* Edgew. against the malarial vector, *Anopheles stephensi*, dengue vector, *Aedes aegypti* and *Bancroftian filariasis* vector, *Culex quinquefasciatus*. South African Journal of Botany. 2018 Jan 31; 114:117-25. https://doi.org/10.1016/j.sajb.2017.10.018
- 53. Maradufu A, Lubega R, Dorn F. Isolation of (5E)-Ocimerone, a mosquito larvicide from Tagetes minuta. Lloydia. 1978; 41:181-3.
- 54. Schmutterer H. Some properties of components of the neem tree (*Azadirachta indica*) and their use in pest control in developing countries [natural pesticide; repellent and phagodeterrent effects; negative effect on the fecundity of some insects; growth-disrupting effect]. Rijksuniversiteit Faculteit Landbouwwetenschappen, Gent. 1981.
- 55. Ameen M, Shahjahan RM, Khan HR, Chowdhury AK. Toxicity of rotenone extracted from indigenous Derris roots on mosquito larvae. J Bangladesh Acad Sci. 1983; 7:39-47.
- 56. Banerji A, Luthria DL, Kokate SD. Toxicity of capillin, the insecticidal principle of *Artemisia nilagirica* Clarke. Indian journal of experimental biology. 1990;28(6):588-9.
- 57. Evans DA, Raj RK. Larvicidal efficacy of Quassin against *Culex quinquefasciatus*. The Indian journal of medical research. 1991 Sep; 93:324-7.
- 58. Chauret DC, Bernard CB, Arnason JT, Durst T, Krishnamurty HG, Sanchez-Vindas P, Moreno N, San Roman L, Poveda L. Insecticidal neolignans from *Piper decurrens*. Journal of Natural Products. 1996 Feb 22;59(2):152-5. <u>https://doi.org/10.1021/np960036y</u>
- 59. Muthukrishnan J, Seifert K, Hoffmann KH, Lorenz MW. Inhibition of juvenile hormone biosynthesis in *Gryllus bimaculatus* by *Glycosmis pentaphylla* leaf compounds. Phytochemistry. 1999 Jan 26;50(2):249-54. https://doi.org/10.1016/S0031-9422(98)00537-8
- 60. Zebitz CP. Effect of some crude and azadirachtinenriched neem (*Azadirachta indica*) seed kernel extracts on larvae of *Aedes aegypti*. Entomologia experimentalis et applicata. 1984 Jan;35(1):11-6. https://doi.org/10.1111/j.1570-7458.1984.tb03351.x
- 61. Qureshi SA, Mohiuddin SH, Fatima B, Badar Y. Laboratory studies on some plant extracts as mosquito larvicides. Pakistan Journal of Scientific and Industrial Research (Pakistan). 1986 29;361-5.
- 62. Sccftwartz AM, Paskewitz SM, Orth AP, Tesch MJ, Toong IY, Goodman WG. The lethal effects of Cyperus iria on *Aedes aegypti*. J Am Mosq Contr Assoc 1998 14;78 82.
- 63. Mwangi RW, Mukiama TK. Evaluation of Melia volkensii extract fractions as mosquito larvicides. Journal of the American Mosquito Control Association. 1988 Dec;4(4):442-7.
- 64. Saxena SC, Yadav RS. A new plant extract to suppress the population of yellow fever and dengue vector *Aedes aegypti* L. (Diptera: Culicidae). Current Science. 1983 Aug 5:713-5.
- 65. Muthukrishnan J, Pushpalatha E. Effects of plant extracts on fecundity and fertility of mosquitoes. Journal of Applied Entomology. 2001 Mar;125(1-2):31-5. https://doi.org/10.1046/j.1439-0418.2001.00503.x