\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(Regular/Supplementary/Improvement)
 (CUCBCSS-UG)
 Mathematics - Complementary Course
 CC15U MAT3 C03- MATHEMATICS III

(2015 Admission onwards)
Time: Three Hours
Maximum: 80 Marks

PART A

Answer all questions. Each question carries 1 mark

1. Solution of a first order differential equation involving an arbitrary constant is called \qquad
2. A differential equation of the form $=$ where $f(x, y)$ and $g(x, y)$ are homogeneous polynomial functions of same degree in x and y is called \qquad
3. Solve $y^{\prime}=-y$.
4. Is the matrix singular or nonsingular.
5. Rank of the matrix is \qquad
6. State Cayley Hamilton theorem.
7. Find the value of such that the vectors $[2,3,4]$ and $[3,2,-]$ are perpendicular.
8. The directional derivative of at P in the direction of is \qquad
9. Give the parametric representation of the plane $3 x+2 y+z=6$.
10. The line integral .d over C is path independent if and only if \qquad is a zero vector.
11. A vector is said to be \qquad if div $=0$.
12. Define a simply connected domain D.

PART B

Answer any nine questions. Each question carries 2 marks
13. Solve the IVP:y' $=-2 x y, y(0)=1$.
14. Solve $x y^{\prime}=x+y$.
15. Represent $x y=c$ by a differential equation.
16. Obtain the row equivalent canonical form of the matrix.
17. Find the augmented matrix of the following system of equations: $2 x+y-3 z=5,2 x-y=3,3 x+4 y+z=2$.
18. Find the eigen values of .
19. Find the component of $[-2,3,-1]$ in the direction of $[4,-2,0]$.
20. Find a normal vector to the plane through the points $(1,3,0),(2,0,8)$ and $(0,2,2)$.
21. Find div $\left[3 x^{2}, 5 x^{3}, x^{2} y z^{3}\right]$.
22. A force $=[3,0,-6]$ acts on a line through a point $(0,-1,4)$. Find the moment vector of about a point $(4,6,-1)$.
23. Find the gradient of $\ln \left(x^{2}+y^{2}\right)$ at $(2,0)$.
24. Find over the straight line from $(0,0)$ to $(1,1)$.

PART C

Answer any six questions. Each question carries 5 marks
25. Find the integrating factor of $\left(y^{2}+2 x^{2}\right) d x+\left(2 x^{3}-x y\right) d y$ and solve.
26. Solve $=$.
27. Find the rank of $\mathrm{A}=$ by reducing it into normal form.
28. Test the consistency and solve the system of equations
$\mathrm{x}+2 \mathrm{y}-\mathrm{z}=3 ; 3 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=1 ; 2 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}=2 ; \mathrm{x}-\mathrm{y}+\mathrm{z}=-1$.
29. Find the total work done in moving a particle in a force field given by

$$
=3 \mathrm{xy}-5 \mathrm{z}+10 \mathrm{x} \text { along the curve } \mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=2 \mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3} \text { from } \mathrm{t}=1 \text { to } \mathrm{t}=2 \text {. }
$$

30. Find a, b, c if $(x+y+a z)+(b x+2 y-z)+(-x+c y+2 z)$ is irrotational.
31. If $=\left(y+y^{2}+z^{2}\right)+(x+z+2 x y)+(y+2 z x)$, find the potential function such that $(1,1,1)=3$.
32. Using Green's theorem evaluate the area enclosed by the ellipse .
33. Evaluate the surface integral of $=[x-z, y-x, z-x]$ over the surface $S:[u \operatorname{cosv}, u \operatorname{sinv}, u], 0 u$
(6x5=30 Marks)

PART D

Answer any two questions. Each question carries 10 marks
34. Find the orthogonal trajectories of the family of circles $x^{2}+(y-c)^{2}=c^{2}$.
35. Find the eigen values and the corresponding eigen vectors of the matrix .
36. Verify Gauss's divergence theorem for, where $=\left(x^{2}-y z\right)+\left(y^{2}-z x\right)+\left(z^{2}-x y\right)$ over the rectangular parallelepiped 0,00 .

