27. Solve the following AP.

A		В	C	D		
W	8	7	9	10		
X	7	9	9	8		
Y	10	8	7	11		
Z	10	6	8	7		

- 28. Explain deterministic inventory problems with no shortages.
- 29. Explain the features of Network flow models.
- 30. Describe the rules of Network construction.
- 31. Find the critical path and duration of the project.

Activity	A	В	С	D	Е	F	G	Н	I	J	K	L	M
Predecessor		A	В	A	D	Е		G	H,J		A	K,C	I
Time in weeks	6	4	7	2	4	10	2	10	6	13	9	3	5

 $(5 \times 8 = 40 \text{ Marks})$

(4)

17U	315	(Pages	,	Jame:					
	THIRD SEMESTE	CR B.C.A. DEGREE I							
		(Supplementary/	*						
(CUCBCSS-UG)									
	CC15	SU BCA3 C06 - OPER	RATIONS RESEA	RCH					
		(Complementa	•						
æ.		(2015 & 2016 A	Admissions)	26.					
Time:	Three Hours	Part	٨	Maximum: 80 Marks					
	Ansv	ver <i>all</i> questions. Each		nark					
1.	Decision variables in	-	question carries i ii						
	a) controllable	b) uncontrollable	c) parameters	d) constants					
2.	,	ing is not associated w	. •	a) constants					
2.	a) proportionality	b) uncertainty	\ 1.11.1 ·	d) divisibility					
3.		•	•	owns $(m < n)$, the number					
٥.	of basic variables wi		equations in n unkn	owns (m < n), the number					
	a) m	b) <i>n</i>	c) $n-m$	d) $n+m$					
4	,	,	,	,					
4.	-	st one basic variable in the							
		and all $z_j - c_j \ge 0$, the							
_	a) infeasible	b) unbounded	c) non-degenerate	d) degenerate					
5.		nded solution, primal l							
	a) an unbounded sol		b) an infeasible solution						
c) a feasible solution			d) none of the above						
6.	stinations is feasible if the								
	number of allocation	ns are							
	a) $m + n - 1$	b) $m + n + 1$	c) $m + n$	d) <i>mn</i>					
7.	The minimum numb	er of lines covering all	zeros in a reduced of	cost matrix of order n can be					
	a) at the most n .	b) at least n.	c) $n - 1$.	d) $n + 1$.					
8.	If the unit cost rises,	optimum order quanti	ty will						
	a) increases		b) decreases						
	c) either increases or	decreases	d) none of the abo	ove					
9.	A minimal spanning tree involves								
	a) all the nodes with cycles allowed.								
	b) all the nodes with cycles not allowed.								
	c) the shortest path between starting and ending nodes.								
	d) a connected netwo	ork with all directed po	otential links.						

(1)

Turn Over

- 10. In critical path analysis CPM is
 - a) event oriented

b) probabilistic in nature

c) deterministic in nature

d) dynamic in nature

 $(10 \times 1 = 10 \text{ Marks})$

Part B

Answer *all* questions. Each question carries 2 marks.

11. Write the standard form of the following L.P.P.

Min
$$z = 2x_1 + x_2 + 4x_3$$
, subject to
$$-x_1 + 2x_2 + x_3 \le 15$$

$$x_1 + 4x_2 \ge 10$$

$$x_1 + 3x_3 \le 2$$

 $x_1, x_2 \ge 0$ and x_3 unrestricted sign.

- 12. What is meant by degeneracy in L.P.P.?
- 13. Write the dual of the following L.P.P

Min
$$z = 2x_1 + 3x_2 + 4x_3$$
, subject to
 $2x_1 + 3x_2 + 5x_3 \ge 2$
 $x_1 + 4x_2 + 6x_3 \le 5$
 $x_1, x_2 \ge 0$ and x_3 unrestricted sign.

- 14. What are the factors affecting inventory control?
- 15. Distinguish between PERT and CPM.

 $(5 \times 2 = 10 \text{ Marks})$

Part C

Answer any *four* questions. Each question carries 5 marks.

- 16. Explain the nature of Operations Research and its limitations.
- 17. Write the procedure for mathematical formulation of a linear programming problem.
- 18. Solve by Simplex method.

$$Max\ z=7x_1+5x_2$$
 , subject to
$$x_1+2x_2\leq 6$$

$$4x_1+3x_2\leq 12$$

$$x_1,x_2\geq 0$$

19. Solve by big-M method.

$$Min\ z=2x_1+3x_2$$
 , subject to
$$x_1+x_2\geq 5$$

$$x_1+2x_2\geq 6$$

$$x_1,x_2\geq 0$$
 (2)

17U315

- 20. Explain Duality theory.
- 21. Find an IBFS to the following T.P. by Least Cost method.

Ī	11	13	17	14	250
	16	18	14	10	300
	21	24	13	10	400
•	200	225	275	250	•

- 22. Explain Travelling Salesman Problem.
- 23. An animal feed company must produce 200lbs of a mixture containing the ingredients X_1 and X_2 . X_1 costs Rs.3 per lbs and X_2 costs Rs.8 per lbs. Not more than 80 lbs of X_1 can be used and minimum quantity of X_2 to be used is 60 lbs. Find how much of each ingredient should be used, if the company wants to minimize the cost. Formulate.

$$(4 \times 5 = 20 \text{ Marks})$$

Part D

Answer any *five* questions. Each question carries 8 marks.

24. Use two-phase method to solve:

$$Max z = 5x_1 + 3x_2$$
, subject to
$$2x_1 + x_2 \le 1$$
$$x_1 + 4x_2 \ge 6$$
$$x_1, x_2 \ge 0$$

25. Use Dual simplex method to solve:

Min
$$z = x_1 + x_2$$
, subject to
$$2x_1 + x_2 \ge 4$$

$$x_1 + 7x_2 \ge 7$$

$$x_1, x_2 \ge 0$$

26. Solve the following TP.

			i
50	30	220	1
90	45	170	3
250	200	50	4
4	2	2	ļi