17U327	(Pages: 2)	Name:
		Reg. No
THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018		
(CUCBCSS-UG) CC17U BCS3 B04 - DATA STRUCTURES USING C		
(Computer Science – Core Course)		
(2017 Admission Regular)		
Time: Three Hours		Maximum: 80 Marks
	PART A	
Answer <i>all</i> questions. Each question carries 1 mark.		
1. The worst case time complexity of linear search algorithm is		
2. An example of a non linear data structure is		
3. If a user tries to remove an element from empty stack, it is called		
4. The data structure required for Breadth First Traversal on a graph is		
5. Linked list is considered as an example oftype of memory allocation.		
6. The quick sort algorithm usesdesign technique.		
7. The result of evaluating the postfix expression 5, 4, 6, +, *, 4, 9, 3, /, +, * is		
8. The data structure suitable to represent hierarchical relationship between elements is		
9. A full binary tree with 2n+	l nodes contain	non leaf nodes.
10is an example of	f external sorting.	
		$(10 \times 1 = 10 \text{ Marks})$
PART B		
Answer <i>all</i> questions. Each question carries 2 marks.		
11. Mention any two areas in which data structures are applied extensively.		
12. Define dynamic data structures.		
13. State the advantages of using postfix notations.		
14. Define a Dequeue.		

15. Differentiate between stack and queue.

16. Define height of a tree.

17. What is a weighted graph?

18. What is a path in graph?

 $(8 \times 2 = 16 \text{ Marks})$

PART C

Answer any six questions. Each question carries 4 marks.

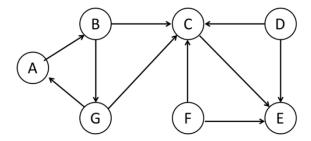
- 19. What do you mean by complexity of an algorithm? Define Big O Notation.
- 20. Explain how you will perform binary search with suitable example.
- 21. Explain how the following infix expression is evaluated with the help of stack :

$$5 * (6+2) - 12/4$$

- 22. Explain selection sort with the help of an example.
- 23. Write the algorithm for converting infix expression to postfix expression.
- 24. Explain linked list implementation of queue.
- 25. What is Circular Linked List? State the advantages and disadvantages of Circular Link List over Doubly Linked List and Singly Linked List.
- 26. Give short note on Expression Trees.
- 27. Explain the two basic techniques for Collision-resolution in Hashing with example.

 $(6 \times 4 = 24 \text{ Marks})$

PART D


Answer any *three* questions. Each question carries 10 marks.

- 28. What is a data structure? Explain different types of linear and non linear data structures with its applications.
- 29. Explain quick sort algorithm with a set of numbers 3, 0, 2, 4, 5, 8, 7, 6, 9.
- 30. Explain algorithms for inorder and postorder tree traversal. Construct a tree for the given inorder and postorder traversals.

Inorder : DGBAHEICF

Postorder : GDBHIEFCA

31. Perform Breadth First Search and Depth First Search on the following graph:

32. What is Hashing? Explain different Hash function methods in detail.

 $(3 \times 10 = 30 \text{ Marks})$