17U325		(Pages: 2)	Name:	
			Reg. No	
	THIRD SEMESTER B.Sc. 1			
	(Sup	oplementary/Improven (CUCBCSS - UG)	ient)	
	CC15U BCS3 B04 - FUNI	,	GITAL ELECTRONICS	
	(Comp	uter Science – Core C	ourse)	
m:	· ·	015 & 2016 Admission		
Time:	Three Hours		Maximum: 80 Marks	
		PART A		
	Answer <i>all</i> que	stions. Each question	carries 1 mark.	
1.	. What is the importance of binary number system in digital computers?			
2.	Find the 2's complement of $(1000)_2$.			
3.	. Give the truth table of XOR gate.			
4.	Define maxterm.			
5.	The simplified form of a Boo	olean equation $(AB + $	$A\bar{B}$) is	
6.	What is a combinational circ	uit?		
7.	What is the bit storage capac	ity of any flip flop?		
8.	The maximum possible rang	maximum possible range of bit-count specifically in n-bit binary counter		
	consisting of 'n' number of f	lip-flops is		
9.	Give the characteristic equat	ion of S-R flip flop.		
10	. The number of binary bits at	the input of a digital-t	o-analog converter (DAC) is	
	known as			
			$(10 \times 1 = 10 \text{ Marks})$	
		PART B		
	Answer <i>all</i> ques	stions. Each question o	arries 2 marks.	
11	. Find the binary equivalent of	f (FACE) ₁₆		
12	. What do you mean by Exces	s-3 code?		
13	. Explain hamming code.			
14	. Draw the logic diagram of ha	alf adders.		
15	What are the applications of	A/D convertors?		
			$(5 \times 2 = 10 \text{ Marks})$	

PART C

Answer any *five* questions. Each question carries 4 marks.

16. Perform binary addition on $(1101011)_2$ and $(11011)_2$

- 17. State and prove DeMorgan's law.
- 18. Write short note on error detection and correction codes.
- 19. Find the minimum sum of products expression for $F(A,B,C,D) = \sum m(0,2,3,4,7,8,14)$
- 20. Explain 4 x 1 multiplexers in detail.
- 21. Differentiate between combinational circuit and sequential circuit.
- 22. Explain JK and T flipflops.
- 23. Explain BCD to 7 segment decoder.

 $(5 \times 4 = 20 \text{ Marks})$

PART D

Answer any *five* questions. Each question carries 8 marks.

- 24. Explain the postulates and identities of Boolean algebra in detail.
- 25. Perform the following operations.
 - a) Convert (1101011)₂ to hexadecimal
 - b) Convert (121)₃ to decimal.
 - c) Find the 9's complement of (1270)₂
 - d) Convert (100111)₂ to corresponding gray code.
- 26. What do you mean by K-map? Discuss with suitable examples for 3 variables and 4 variables.
- 27. What do you mean by universal gates? Draw the NOR gate implementation and find the minimum number of NOR gates required for F= PQ+ QR+ RS+ST
- 28. What are shift registers? Explain different types of shift registers in detail.
- 29. Explain Ring and Johnson counters in detail.
- 30. What is ADC? Why it is needed? Explain Dual Slope and Successive Approximation A/D Converters.
- 31. Explain different types of Analog to Digital converters.

 $(5 \times 8 = 40 \text{ Marks})$
