$\qquad$

# SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2018 

(CUCBCSS - JG)

## CC15U CHE B11 - PHYSICAL CHEMISTRY III

Chemistry - Core Course
(2015 Admission)
Time: Three Hours
Maximum: 80 Marks

## Section A

Answer in one word or sentence
Answer all questions.

1. The fraction of the total current carried by an ion is called $\qquad$
2. Faraday's second law of electrolysis is used to find out $\qquad$ of substances.
3. A calomel electrode is reversible with respect to $\qquad$
4. Quinhydrone is an equimolecular mixture of $\qquad$ and $\qquad$
5. The hydrolysed solution of copper sulphate is $\qquad$ in nature.
6. Vant Hoff's factor of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is $\qquad$
7. The osmotic pressure of $5 \%$ solution of cane sugar at $15^{0} \mathrm{C}$ is $\qquad$
8. Calculate the miller indices of a plane which cut through the crystal axis at $6 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$.
9. Silicon doped with arsenic is $\qquad$ semiconductor.
10. ZnO is white when cold and yellow when heated. It is due to the development of $\qquad$
( $10 \times 1=10$ Marks)

## Section B

Answer any ten questions. Each question carries 2 marks.
11. Calculate the pH of $10^{-7} \mathrm{M}$ of HCl solution.
12. Write down the Debye Huckel Onsagar equation and explain the terms.
13. State the Faraday's laws of electrolysis.
14. Write down the expression interplanar spacing in cubic unit cell.
15. What are the Bravais's lattices consistent with cubic unit cell? Calaculate the number of atoms in those unit cells.
16. What are reversible electrodes? Describe giving examples.
17. Calculate the emf of the cell $\mathrm{Cd}, \mathrm{Cd}^{2+} \| \mathrm{Cu}^{2+}, \mathrm{Cu} \mathrm{E}^{0}\left(\mathrm{Cu}^{2+}, \mathrm{Cu}\right)=0.34 \mathrm{~V}$ and $\mathrm{E}^{0}\left(\mathrm{Cd}^{2+}\right.$, $\mathrm{Cd})=-0.40 \mathrm{~V}$.
18. State the Henderson equation.
19. Define Rault's law.
20. List out the different collegative properties exhibited by dilute solutions.
21. Write down the correct order of equivalent conductance of $\mathrm{NaCl}, \mathrm{KCl}$, and CsCl solutions at infinite dilution with reasons for the same.

22 . What are the different classifications of liquid crystals?

## Section C

Answer any five questions. Each question carries 6 marks
23. Explain the moving boundary method for the determination of transport number.
24. The diffraction pattern for a cubic system was observed from (111), (200), (220), (311) and (222) planes. Identify the crystal system with suitable explanation.
25. Explain the pH determination using glass electrode.
26. A metallic element exist as a cubic unit cell with $\mathrm{a}=2.85 \AA$ Á, $\mathrm{d}=7.20 \mathrm{gm} / \mathrm{cm}^{3}$. How many unit cells will be present in 100 gm of the metal?
27. Derive the expression for the entropy change accompanying a cell reaction from the temperature coefficient of EMF.
28. Acetic acid associates to form double molecules. 1.65 g of acetic acid when dissolved in 100 g of benzene raised the boiling point by $0.36{ }^{\circ} \mathrm{C}$. Calculate Van't Hoff's factor and degree of association of acetic acid in benzene.
29. Calculate the pH of the solution obtained by mixing 6.0 g of acetic acid and 12.30 g of sodium acetate and making the volume of the solution to $500 \mathrm{ml} . \mathrm{K}_{\mathrm{a}}$ for acetic acid is $1.8 * 10^{-5}$.
30. Explain Frenkel and Schottky defects in crystal systems.
( $5 \times 6=30$ Marks)

## Section D

Answer any two questions. Each question carries 10 marks.
31. a) Derive the Bragg's equation.
b) Briefly explain the Rotating crystal method and Powder method for the determination of crystal structure.
32. Explain different type of conductometric titrations. What are the advantages of conductometic titrations?
33. a) Explain non ideal solutions with positive and negative deviations.
b) 60.0 g of a solution containing 0.507 g of $\mathrm{AgNO}_{3}$ was electrolysed between Ag electrodes. After the electrolysis 50.0 g of anodic solution was found to contain 0.520 g of $\mathrm{AgNO}_{3}$. A current of 2 amp was passed for 50 seconds. Calculate the transport number of Ag and Nitrate ions.
34. Write short note on
a) Single electrode potentials.
b) Concentration cells.
c) Calomel electrode.
d) Quinhydrone electrode.
( $\mathbf{2} \times 10=20$ Marks)

