\qquad
\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2018

 (CUCBCSS-UG)CC15U MAT6 B12 - NUMBER THEORY AND LINEAR ALGEBRA
Mathematics - Core Course (2015 Admission)

Time: Three Hours
Maximum: 120 Marks

PART-A

(Answer all questions. Each question carries 1 mark.)
1 True or false: Let V be a finite dimensional Vector Space with dimension 5. Minimal spanning set of V consists of minimum 5 elements.

2 Give an example for infinite dimensional vector space.
3 Write standard basis of \mathbb{R}^{3} over \mathbb{R}.
4 Determine a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{Im} f=\{(x, o, z): x, z \in \mathbb{R}\}$
5 If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear and $T(0,1)=(1,1)$, then $T(0,-1)=$
6 The linear Diophantine equation $a x+b y=c$ has a solution if and only if......
7 For a prime p, define $p^{\#}$?
8 Give an example for pseudo prime.
9 State the converse of Wilson's theorem.
$10 \sum_{d / 100} \phi(d)=\ldots \ldots$.
11 Give an example for a non multiplicative number theoretic function.
$12 \sigma(16)=$ \qquad ($12 \times 1=12$ Marks)

PART-B

(Answer any ten questions. Each question carries 4 marks.)
13. Show that the set $L=\{(x, y): \alpha x+\beta y=0 ; x, y \in \mathbb{R}\}$ is a subspace of the real space \mathbb{R}^{2}.
14. Find the value of m, such that the vector $(m, 7,-4)$ is a linear combination of vectors $(-2,2,1)$ and $(2,1,-2)$.
15. Decide whether $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $f(x, y, z)=(x+2, y, z)$ is linear or not?
16. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $T(a, b)=(b, 0)$, prove that $\operatorname{ImT}=$ Ker T.
17. Prove that \mathbb{R}^{3}, the set of all 3 - tuples of real numbers is a vector space over \mathbb{R}.

18 . Determine the subspace of \mathbb{R}^{3} with dimension 2 .
19. Find all prime numbers that divide 20 !
20. If n is a square free integer, prove that $\tau(n)=2^{r}$, where r is the number of prime divisors of n.
21. Show that the square of any odd integer is of the form $8 k+1$.
22. Determine all positive integer solutions of the Diophantine equation $54 x+21 y=906$.
23. Show that $3^{2 n}+24 n \equiv 1(\bmod 32)$
24. Find the solution of the system of congruences:

$$
\begin{aligned}
& 3 x+4 y \equiv 5(\bmod 13) \\
& 2 x+5 y \equiv 7(\bmod 13)
\end{aligned}
$$

25 . Find the remainder when 18 ! is divided by 23 .
26. Find the last two digits in the decimal representation of 3^{256}.
(10×4 =40 Marks)

PART-C

(Answer any six questions. Each question carries 7 marks.)
27. Let V be a vector space over a field F. If S is a subset of V that contains at least two elements, prove that S is linearly dependent if and only if at least one element of S can be expressed as a linear combination of the other elements of S .
28. If V has a finite basis B , prove that every basis of V is finite and has the same number of elements as B.
29. Let V be a finite dimensional vector space. If G is a finite spanning set of V and if I is a linearly independent subset of V such that $I \subseteq G$, prove that there is a basis B of V such that $\mathrm{I} \subseteq B \subseteq G$.
30. Let V be a vector space of dimension $n \geq 1$ over a field F . Prove that V is isomorphic to the vector space F^{n}.
31. State and prove fundamental theorem of Arithmetic.
32. For arbitrary integers a and b , prove that $a \equiv b(\bmod n)$ if and only if a and b leave the same nonnegative remainder when divided by n.
33. State and prove Fermat's Theorem.
34. If n is a positive integer and p a prime, prove that the exponent of the highest power of p that divides n ! is $\sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right]$.
35. If f is a multiplicative function and F is defined by $F(n)=\sum_{d / n} f(d)$, prove that F is also multiplicative.
($6 \times 7=42$ Marks)

.PART-D

(Answer any two questions. Each question carries 13 marks.)
36. State and prove dimension Theorem.
37. State and prove Euclidean Algorithm for finding the g.c.d.
38. (a) Let f and F be number - theoretic functions such that $F(n)=\sum_{d / n} f(d)$. Prove that $\sum_{n=1}^{N} F(n)=\sum_{k=1}^{N} f(k)\left[\frac{N}{k}\right]$, for any positive integer N.
(b) Verify the result $\sum_{n=1}^{N} \sigma(n)=\sum_{n=1}^{N} n\left[\frac{N}{n}\right]$ for $\mathrm{N}=6$.

