15U603

Name: .
Reg. No

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2018
 (CUCBCSS-UG)

CC15U MAT6 B11 - NUMERICAL METHODS
Mathematics - Core Course

Time: Three Hours
(2015 Admission)
Maximum: 120 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Using Bisection Method find first two iterations for the root of the equation $x^{3}+2 x-1=0$
2. Write $\Delta^{\mathrm{n}} \mathrm{y}_{0}$ in terms of values of y .
3. Write the relation between E and D.
4. Prove that $\Delta \equiv \mathrm{E}-1$.
5. Write the Gauss's backward difference formula.
6. What do you mean by inverse interpolation?
7. State Simpson's $3 / 8$ rule of integration.
8. What do you mean by pivoting?
9. Give the sufficient condition for obtaining a solution of a linear system by Jacobi's iteration method.
10. Define the characteristic equation of a square matrix.
11. Give the general form of a 4×4 tri diagonal matrix.
12. Give the Taylor series generated by f at $\mathrm{x}=\mathrm{a}$.

Section B

Answer any ten questions. Each question carries 4 marks.
13. Explain Regula Falsi method.
14. Using Ramanujan's method, find a real root of the equation

$$
1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\cdots=0
$$

15. Construct the backward difference table, where $f(x)=\sin x, x=1.0(0.1) 1.5,4 D$.
16. Using the method of separation of symbols, show that

$$
\Delta^{n} u_{x-n}=u_{x}-n u_{x-1}+\frac{n(n-1)}{2} u_{x-2}+\cdots+(-1)^{n} u_{x-n}
$$

17. Find the missing term in the following table:

X	0	1	2	3	4
Y	1	3	9	$\cdots \cdots \cdots$	81

18. Find the divided difference table for the data

X	0	1	2	4
$\mathrm{f}(\mathrm{x})$	1	1	2	5

19. Compare Gaussian Elimination and Gauss Jordan Elimination methods
20. Use Trapezoidal Rule with $n=2$ to estimate $\int_{1}^{2} \frac{1}{x} d x$.
21. Compute $f^{\prime}(0.2)$ from the following data.

X	0.0	0.2	0.4	0.6	0.8	1.0
$\mathrm{f}(\mathrm{x})$	1.00	1.16	3.56	13.96	41.96	101.00

22. Define eigen vector of a square matrix.
23. Define the spectral radius of a square matrix.
24. Find the eigen values of the matrix $\left[\begin{array}{cc}-1 & 0 \\ 5 & -3\end{array}\right]$.
25. Find the value of $y(0.1)$ using Picard's method: $y^{\prime}=\frac{x-y}{x+y} ; y(0)=1$.
26. Given $y^{\prime}=\frac{x^{2}}{y^{2}+1} ; y(0)=0$. Find $y(0.1)$ using second order Runge- Kutta method.

(10x4=40 Marks)

Section C

Answer any six questions. Each question carries 7 marks.
27. Find a real root of the equation $x e^{x}=1$, using the Newton-Raphson method.
28. Use Lagrange's interpolation to find $\ln 9.2$ with $n=3$ with the given table:

X	9.0	9.5	10.0	11.0
$\ln \mathrm{X}$	2.1972	2.2513	2.3026	2.3979

29. Prove that the nth differences of an $\mathrm{n}^{\text {th }}$ degree polynomial is constant.
30. Tabulate $y=x^{3}$ for $x=2,3,4,5$ and find the cube root of 10 , using method of successive approximations
31. Find the LU decomposition of the matrix $B=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$
32. From the following data obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=1.2$

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
Y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

33. Using Simpson's rule evaluate $I=\int_{0}^{1} \frac{1}{1+x} d x$ correct to three decimal places. Take $h=0.5$
34. Form the Taylor's series for $y(x)$. Find $y(0.1)$ correct to four decimal places if $y(x)$ satisfies $y^{\prime}=x-y^{2}$ and $y(0)=1$.
35. Given $y^{\prime}=x+y ; y(0)=1$. Find approximately the value of y at $x=0.2$ and $x=1$, using Picard's method.

Section D

Answer any two questions. Each question carries 13 marks
36. (a) Derive Newton's forward difference interpolation formula.
(b) The table gives the value of $\tan x$ for $0.10 \leq x \leq 0.30$. Find $\tan 0.12$

X	0.10	0.15	0.20	0.25	0.30
Y	0.1003	0.1511	0.2027	0.2553	0.3093

37. Solve the following system using Gauss-Jordan method:

$$
2 x-3 y+z=-1, x+4 y+5 z=25,3 x-4 y+z=2
$$

38. (a) Use fourth order Runge- Kutta method with $h=0.2$ to find the value of y at

$$
x=0.2, x=0.4 \text { and } x=0.6, \text { given } \frac{d y}{d x}=1+y^{2} ; y(0)=0
$$

(b) Given $\frac{d y}{d x}=1+y^{2} ; y(0)=0$. Compute $y(0.8)$ using Milne's method.
(2x13=26 Marks)

