15U603

(Pages:

SIXTH SEMESTER B.Sc. DEGREE E (CUCBCSS-**CC15U MAT6 B11 - NUME** Mathematics - Co (2015 Admis

Time: Three Hours

Section A Answer *all* questions. Each question carries 1 mark. 1. Using Bisection Method find first two iterations for the root of the equation

- - $x^3 + 2x 1 = 0$
- 2. Write $\Delta^n y_0$ in terms of values of y.
- 3. Write the relation between E and D.
- 4. Prove that $\Delta \equiv E 1$.
- 5. Write the Gauss's backward difference formula.
- 6. What do you mean by inverse interpolation?
- 7. State Simpson's 3/8 rule of integration.
- 8. What do you mean by pivoting?
- 9. Give the sufficient condition for obtaining a solution of a linear system by Jacobi's iteration method.
- 10. Define the characteristic equation of a square matrix.
- 11. Give the general form of a 4×4 tri diagonal matrix.
- 12. Give the Taylor series generated by f at x = a.

Section B

Answer any *ten* questions. Each question carries 4 marks.

- 13. Explain Regula Falsi method.
- 14. Using Ramanujan's method, find a real root of the equation

$$1 - x + \frac{x^2}{(2!)^2} - \frac{x^3}{(3!)^2} + \frac{x^4}{(4!)^2} - \dots = 0.$$

- 16. Using the method of separation of symbols, show that

$$\Delta^n u_{x-n} = u_x - nu_{x-1} + \frac{n(n-1)}{n}$$

(1)

3)	Name:
	Reg. No
EXAMINA	TION, MARCH 2018
-UG)	
ERICAL M	ETHODS
ore Course	
ssion)	
	Maximum: 120 Marks

(12 x 1=12 Marks)

15. Construct the backward difference table, where f(x) = sinx, x = 1.0 (0.1)1.5, 4D.

 $+\frac{n(n-1)}{2}u_{x-2}+\cdots+(-1)^n u_{x-n}$.

Turn Over

17. Find the missing term in the following table:

Х	0	1	2	3	4
Y	1	3	9		81

18. Find the divided difference table for the data

X	0	1	2	4
f(x)	1	1	2	5

19. Compare Gaussian Elimination and Gauss Jordan Elimination methods.

20. Use Trapezoidal Rule with n = 2 to estimate $\int_{1}^{2} \frac{1}{x} dx$.

21. Compute f'(0.2) from the following data.

Х	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	1.00	1.16	3.56	13.96	41.96	101.00

22. Define eigen vector of a square matrix.

23. Define the spectral radius of a square matrix.

24. Find the eigen values of the matrix $\begin{bmatrix} -1 & 0 \\ 5 & -3 \end{bmatrix}$.

25. Find the value of
$$y(0.1)$$
 using Picard's method: $y' = \frac{x-y}{x+y}$; $y(0) = 1$.

26. Given
$$y' = \frac{x^2}{y^2+1}$$
; $y(0) = 0$. Find $y(0.1)$ using second order Runge-Kutta method.

(10x4=40 Marks)

Section C

Answer any six questions. Each question carries 7 marks.

27. Find a real root of the equation $xe^x = 1$, using the Newton-Raphson method.

28. Use Lagrange's interpolation to find ln9.2 with n = 3 with the given table:

	Х	9.0	9.5	10.0	11.0
Ī	ln x	2.1972	2.2513	2.3026	2.3979

29. Prove that the *n*th differences of an n^{th} degree polynomial is constant.

30. Tabulate $y = x^3$ for x = 2,3,4,5 and find the cube root of 10, using method of successive

approximations

31. Find the LU decomposition of the matrix
$$B = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$

32. From the following data obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2

Х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
Y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

33. Using Simpson's rule evaluate $I = \int_0^1 \frac{1}{1+x} dx$ correct to three decimal places. Take

$$h = 0.5$$

34. Form the Taylor's series for y(x). Find y(0.1) correct to four decimal places if y(x)

satisfies $y' = x - y^2$ and y(0) = 1.

35. Given y' = x + y; y(0) = 1. Find approximately the value of y at

x = 0.2 and x = 1, using Picard's method.

Section D

Answer any two questions. Each question carries 13 marks.

36. (a) Derive Newton's forward difference interpolation formula.

(b) The table gives the value of $\tan x$ for $0.10 \le x \le 0.30$. Find $\tan 0.12$

Х	0.10	0.15	0.20	0.25	0.30
Y	0.1003	0.1511	0.2027	0.2553	0.3093

37. Solve the following system using Gauss-Jordan method:

38. (a) Use fourth order Runge-Kutta method with h = 0.2 to find the value of y at

(b) Given
$$\frac{dy}{dx} = 1 + y^2$$
; $y(0) = 0$. Compute

(3)

15U603

(6x7=42 Marks)

-4v + z = 2

 $\frac{dy}{dx} = 1 + y^2; y(0) = 0$

y(0.8) using Milne's method.

(2x13=26 Marks)