Name:
Reg. No
\qquad
\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2018
(CUCBCSS-UG)
CC15U MAT6 B09-REAL ANALYSIS
Mathematics - Core Course (2015 Admission)
Time: Three Hours

Section A

Answer all questions. Each question carries 1 mark

1. Give an example of a function which has absolute maximum and absolute minimum at every point of \mathbb{R}.
2. State true or false: 'Continuous functions are always bounded'.
3. Does $4 \sin \mathrm{x}=\mathrm{x}$ has a positive solution in $\left[\frac{\pi}{2}, \pi\right]$.
4. Find the norm of the partition P: $(0,2,3,4)$.
5. State true or false: 'An unbounded function cannot be Riemann integrable'.
6. Define primitive of f.
7. Evaluate $\lim \frac{n x}{1+(n x)^{2}}$.
8. Define uniform norm of a bounded function.
9. Is $f_{n}(x)=\frac{1}{x+n}$ is uniformly convergent in $[0, \mathrm{~b}] ; \mathrm{b}>0$?
10. Give an example of an improper integral.
11. Define Beta function.
12. Find the value of $\Gamma(3)$.

$$
\text { (} 12 \times 1=12 \text { Marks) }
$$

Section B

Answer any ten questions. Each question carries 4 marks
13. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Prove that $f(I)$ is a closed bounded interval.
14. Define Lipschitz function. Prove that a Lipschitz function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A.
15. State maximum minimum theorem. Find the absolute maximum and absolute minimum of $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$ in $\mathrm{A}=[-1,1]$.
16. Define Riemann integral of a function. Show that a constant function defined on $[a, b]$ is Riemann integrable on [a, b].
17. Use fundamental theorem of calculus to evaluate $\int_{a}^{b} x d x$.
18. If $f(x)<g(x) \forall x \in[a, b]$, then show that $\int_{a}^{b} f(x) d x<\int_{a}^{b} g(x) d x$.
19. Check the uniform convergence of $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \ldots$ in $[-1,1]$.
20. Show that $G(x)=x^{n}(1-x), x \in[0,1]$ converges uniformly on $[0,1]$.
21. If $\left(f_{n}\right)$ is a sequence of continuous functions converging uniformly to f, prove that f is continuous.
22. Define conditional convergence with a suitable example.
23. Express $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ as a Beta function.
24. Find $\int_{0}^{2}\left(8-x^{3}\right)^{\frac{-1}{3}} d x$.
25. Show that $B(1, n)=\frac{1}{n}$.
26. Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(10×4 = 40 Marks)

Section C

Answer any six questions. Each question carries 7 marks
27. If f and g are uniform continuous on a subset A of \mathbb{R}, then prove that $f+g$ is uniformly continuous on A.
28. Show that $f(x)=x(x-1)(x-2)(x-3)$ has four roots in $[0,5]$.
29. If $f \in R[a, b]$ then prove that f is bounded on $[a, b]$.
30. State and prove product theorem on Riemann Integration.
31. State and prove Weierstrass M test for the series.
32. If $f: A \rightarrow \mathbb{R}$ is uniformly continuous on $A \subseteq \mathbb{R}$ and $\left(x_{n}\right)$ is a Cauchy sequence in \mathbb{R}, prove that $f\left(x_{n}\right)$ is a Cauchy sequence in \mathbb{R}.
33. Define Cauchy principal value of $\int_{-\infty}^{\infty} f(x) d x$. Also evaluate it for $\int_{-\infty}^{\infty} \sin x d x$.
34. Show that $B(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.
35. Prove that $\int_{0}^{\infty} e^{-a x} x^{n-1} d x=\frac{\Gamma n}{a^{n}}$.

$$
\text { (} 6 \times 7=42 \text { Marks) }
$$

Section D

Answer any two questions. Each question carries 13 marks
36. (a) State and prove intermediate value theorem.
(b) Prove that $\sin x$ is uniformly continuous on $[0, \infty]$.
37. (a) State and prove Cauchy criterion for uniform convergence of a sequence of functions.
(b) Test for uniform convergence $\sum_{1}^{\infty} \frac{\sin n x}{n^{p}}$ for $p>1$.
38. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ and $c \in(a, b)$. Prove that $f \in R[a, b]$ if and only if its restrictions to $[\mathrm{a}, \mathrm{c}]$ and $[\mathrm{c}, \mathrm{b}]$ are both Riemann integrable and $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
(b) Evaluate $\int_{-10}^{10} \operatorname{Sgn}(x) d x$ where $\operatorname{Sgn}(x)$ denotes Signum function on $[-10,10]$.

