34. What is Cobb-Douglas production function? State and prove the properties of a C-D function.
35. What is linear programming? What are its components? What are its uses?
36. Determinate the total demand x for industries I, II and II given the matrix of technical coefficient of A and final demand vector B.

$$
A=\left[\begin{array}{ccc}
0.3 & 0.4 & 0.1 \\
0.5 & 0.2 & 0.6 \\
0.1 & 0.3 & 0.1
\end{array}\right] \quad B=\left[\begin{array}{c}
20 \\
10 \\
30
\end{array}\right]
$$

Name: .
Reg. No..

SIXTH SEMESTER B.A. DEGREE EXAMINATION, APRIL 2019

(Regular/Improvement/Supplementary)
(CUCBCSS-UG)
CC15U ECO6 B12 - MATHEMATICAL ECONOMICS Economics-Core Course
(2015 Admission onwards)
Time: Three Hours
Maximum: 80 Marks

Answers may be written either in English or in Malayalam

Part A

Answer all questions. Each question carries $1 / 2$ mark

1. This is a simplified description of reality, designed to yield hypotheses about economic behaviour that can be tested
(a) An economic model
(b) A theory
(c) A postulation
(d) A possibility
2. The given function $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, is an example of ---------- function
(a) quadratic
(b) polynomial
(c) linear
(d) rational
3. If a saving function is given as $S=\alpha+\beta y$, where Y is the disposable income, the expression for investment multiplier is
(a) β
(b) $\frac{1}{\beta}$
(c) $\frac{1}{1-\beta}$
(d) $1-\beta$
4. Given a saving function $S=100+0.8 \mathrm{Y}$, MPC is
(a) 100
(b) 0.8
(c) 0.2
(d) -100
5. If $u=x^{n}$ is total utility, the function of marginal utility will be
(a) x^{n+1}
(b) u^{n-1}
(c) 0
(d) $n x^{n-1}$
6. $\frac{A R}{A R-M R}$ is equal to
(a) Elasticity of demand
(b) Marginal Revenue
(c) Average Revenue
(d) Supply function
7. The value of Lagrange multiplier λ gives the approximate change in the objective function caused by a small change in the
(a) variables in the constraint
(b) constant of the constraint
(c) objective function
(d) any of these is possible
8. If $M R T S_{L K}=2$, then $\frac{M P_{K}}{M P_{L}}$ is
(a) 1
(b) 4
(c) $\frac{1}{2}$
(d) $\frac{2}{7}$
9. The first derivative of a function measures the rate of change or ---------- of a function.
(a) slope
(b) concavity
(c) convexity
(d) intercept
10. Where $\propto=\frac{3}{4}$ and $\beta=\frac{1}{4}$, the returns to scale for the Cob Douglas Productions functions is
(a) Increasing
(b) Decreasing
(c) Constant
(d) Cannot say without additional data
11. ---------- matrix represents in monetary terms or quantitative terms all the transactions of the economic system.
(a) Transactions
(b) Technology
(c) Square
(d) Column
12. ----------- are structural parameters showing the linear relationship between the input of each industry and its total output.
(a) Leontief matrix
(b) Critical values
(c) Transactions matrix
(d) Technical coefficients
($12 \times 1 / 2=6$ Marks $)$
Part B (Very Short Answer Questions)
Answer any ten questions. Each question carries 2 marks
13. What is an economic model?
14. Define a consumption function.
15. Given a total revenue function, $T R=14-Q^{2}$, find Average Revenue.
16. Given a $T R=600 q-10 q^{2}$ and $T C=2 q^{3}-4 q^{2}+100 q+624$, find the profit function
17. Given a production function $Q=x^{2}+2 x y+y^{2}$ for a firm which uses two inputs x and y in the production process, find marginal product of the two inputs.
18. Define the Rate of Commodity Substitution.
19. Given the demand function $\mathrm{q}=-5 \mathrm{p}+100$, find price elasticity of demand when price is Rs. 5
20. The cost function of a firm is $C=3 q^{2}+5 q+75$. At what level of production will the average cost per unit be the smallest.
21. What is a Leontief matrix?
22. What is a matrix of technical coefficients?
23. What is feasible solution in an LP problem?
24. Given the demand function $=54-p^{3}$, find the marginal revenue of demand when the output x is 27 units and price is Rs. 3
$(10 \times 2=20$ Marks $)$

Part C (Short Essay Questions)

Answer any six questions. Each question carries 5 marks
25. State the advantages of mathematical treatment of economics.
26. Given a production function of a firm with two inputs, $Q=6 x^{2}+3 x y+2 y^{2}$, find $M R T S_{x y}$ when $\mathrm{y}=4$ and $\mathrm{x}=5$
27. Given $Q_{1}=100-P_{1}+0.75 P_{2}-0.25 P_{3}+0.0075 Y$. At $P_{1}=10, P_{2}=20, P_{3}=40$ and $\mathrm{Y}=10,000$, find the different cross elasticities of demand
28. Given the total cost function, $T C=3 x^{2}-x y+2 y^{2}-4 x-7 y+12$ of a firm producing two goods x and y , find the quantities of the two goods x and y that should be produced to minimise cost
29. The cost function of a firm producing two goods x and y is $c=5 x^{2}+2 x y+3 y^{2}+800$. The firm has to meet a production quota $\mathrm{x}+\mathrm{y}=39$. Estimate the quantities of output of the two goods the firm should produce so that the costs are kept to the minimum.
30. Distinguish between homogenous and non-homogenous functions.
31. A perfectly competitive firm faces $\mathrm{P}=$ Rs. 4 and $T C=q_{3}-7 q_{2}+12 q+5$. Find the best level of output of the firm. Also find the profit of the firm at this level of output.
32. Suppose the demand for a good is represented by the demand equation: $\mathrm{Q}_{\mathrm{D}}=70000-$ 2000 P and that the supply is represented by the supply equation: $\mathrm{Q}_{\mathrm{S}}=5000+2000 \mathrm{P}$. Find the equilibrium price and quantity
($6 \times 5=30$ Marks $)$
Part D (Essay Questions)
Answer any two questions. Each question carries 12 marks.
33. Solve graphically:

Maximise $Z=80 x_{1}+120 x_{2}$
subject to the constraints

$$
\begin{aligned}
x_{1}+x_{2} & \leq 9 \\
x_{1} & \geq 2 \\
x_{2} & \geq 3 \\
20 x_{1}+50 x_{2} & \leq 360
\end{aligned}
$$

And the non-negativity constraint $x_{1}, x_{2} \geq 0$

