(Pages: 2)

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Supplementary/Improvement)

(CUCBCSS-UG)

CC15U MAT6 B10 - COMPLEX ANALYSIS

Mathematics - Core Course (2015 Admission onwards)

Time: Three Hours

Part-A

Maximum: 120 Marks

Answer *all* questions. Each question carries 1 mark.

- 1. Write the Cauchy Reimann equations in polar form.
- 2. Verify the function u = xy is harmonic or not.
- 3. Show that $e^{(1+i)\pi} = -e^{\pi}$
- 4. Define Jordan arc.
- 5. Find $\int_{|z|=1} \left(\frac{z^2}{z-2}\right) dz$
- 6. State Morera's Theorem
- 7. Find the power series representation of $\frac{1}{1-z}$ in negative powers of z
- 8. If R is the radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ then find the radius of convergence of $\sum_{n=0}^{\infty} a_n z^{2n}$

9. If
$$z_n = (2+i) + \left(\frac{2i-1}{n}\right)$$
, then find $\lim_{n \to \infty} z_n$

10. Which type of the singularity does the function $f(z) = \frac{1}{\sin \frac{\pi}{z}}$ has at z = 0

11. Find the residue of $f(z) = e^{\frac{2}{z}}$ at z = 0

12. Define Cauchy principal value of the integral $\int_{-\infty}^{\infty} f(x) dx$

(12 x 1 = 12 Marks)

Part-B

Answer any ten questions. Each question carries 4 marks.

- 13. Show that $f(z) = z \operatorname{Re}(z)$ is nowhere analytic.
- 14. If f(z) = u + iv is analytic in a domain D then show that u and v are harmonic in D.
- 15. Find the real and imaginary parts of sinhz.
- 16. Define a branch cut and write the branch cut for the complex valued function log z
- 17. Evaluate $\int_{|z|=2} \bar{z} dz$
- 18. State and prove principle of deformation of path.
- 19. Find $\oint_C \frac{1}{z-i} dz$ where C is the boundary of the triangle with vertices -1, 1, 2i in clockwise sense using Cauchy integral formula.
- 20. Find the Taylor series expansion for cosz about $z = \frac{\pi}{2}$

16U602

- 21. State Laurent's Theorem.
- 22. If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then show that $\lim_{n\to\infty} z_n = z$ where $z_n = x_n + i y_n$ and z = x + iy
- 23. Find the residues at singular points of the function $\frac{z^3+2z}{(z-i)^3}$
- 24. Using Cauchy's residue theorem evaluate $\int_C \frac{2z^2+2}{z^2-1} dz$ where C is the circle |z-1|=1 in counter clockwise sense.
- 25. Define isolated singular point at infinity and residue at infinity.
- 26. Evaluate the integral $\int_0^\infty \frac{1}{x^{2}+1} dx$ using residues.

(10 x 4 = 40 Marks)

Part-C

Answer any six questions. Each question carries 7 marks.

- 27. Derive the Cauchy Reimann equations of analytic functions.
- 28. If $u v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is analytic function of z = x + iy then find f(z) in terms of z
- 29. Find all values of
 - a) sin⁻¹(-i)
 - b) $tan^{-1}(2i)$
- 30. Let C be the arc of the circle |z| = 2 from z= 2 to z = 2i that lies in the first quadrant. Show that $|\int_C \frac{1}{z^2-1} dz| \le \frac{\pi}{3}$ without evaluating the integral.
- 31. State and prove Cauchy's in equality.
- 32. Find all Laurent series of $\frac{1}{z^3-z^4}$ with centre 0
- 33. a) Define Circle of convergence and radius of convergence of the power series.
 - b) Find the circle of convergence and radius of convergence of the series $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$
- 34. State and prove Cauchy's Residue Theorem.
- 35. Show that $\int_0^{2\pi} \frac{d\theta}{a+b\cos\theta} = \frac{2\pi}{\sqrt{a^2-b^2}}$ a > b > 0

(6 x 7 = 42 Marks)

Part-D

Answer any two questions. Each question carries 13 marks.

- 36. If f(z) is a regular function of z, then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2}\right) |f(z)|^2 = 4 |f'(z)|^2$
- 37. State and prove Cauchy's Integral formula.

38. a) Show that
$$\int_{-\infty}^{\infty} \left(\frac{2x^2 - 1}{x^4 + 5x^2 + 4}\right) dx = \frac{\pi}{2}$$

b) If $a > 0$, $b > 0$ then show that
$$\int_{0}^{\infty} \left(\frac{\cos ax}{x^2 + b^2}\right) dx = \frac{\pi}{2b}e^{-ab}$$

 $(2 \times 13 = 26 \text{ Marks})$
