\qquad
\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2019
(Regular/Supplementary/Improvement) (CUCBCSS-UG)

CC15U MAT6 B10 - COMPLEX ANALYSIS

Mathematics - Core Course
(2015 Admission onwards)
Time: Three Hours

Part-A

Answer all questions. Each question carries 1 mark.

1. Write the Cauchy Reimann equations in polar form.
2. Verify the function $u=x y$ is harmonic or not.
3. Show that $e^{(1+i) \pi}=-e^{\pi}$
4. Define Jordan arc.
5. Find $\int_{|z|=1}\left(\frac{z^{2}}{z-2}\right) d z$
6. State Morera's Theorem
7. Find the power series representation of $\frac{1}{1-z}$ in negative powers of z
8. If R is the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$ then find the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{2 n}$
9. If $z_{n}=(2+i)+\left(\frac{2 i-1}{n}\right)$, then find $\lim _{n \rightarrow \infty} z_{n}$
10. Which type of the singularity does the function $f(z)=\frac{1}{\sin \frac{\pi}{z}}$ has at $\mathrm{z}=0$
11. Find the residue of $f(z)=e^{\frac{2}{z}}$ at $\mathrm{z}=0$
12. Define Cauchy principal value of the integral $\int_{-\infty}^{\infty} f(x) d x$

$$
\text { (} 12 \times 1=12 \text { Marks) }
$$

Part-B

Answer any ten questions. Each question carries 4 marks.
13. Show that $f(z)=z \operatorname{Re}(z)$ is nowhere analytic.
14. If $f(z)=u+i v$ is analytic in a domain D then show that u and v are harmonic in D.
15. Find the real and imaginary parts of sinhz.
16. Define a branch cut and write the branch cut for the complex valued function $\log z$
17. Evaluate $\int_{|z|=2} \bar{z} \mathrm{dz}$
18. State and prove principle of deformation of path.
19. Find $\oint_{C} \frac{1}{z-i} \mathrm{dz}$ where C is the boundary of the triangle with vertices $-1,1,2 \mathrm{i}$ in clockwise sense using Cauchy integral formula.
20. Find the Taylor series expansion for $\cos \mathrm{z}$ about $\mathrm{z}=\frac{\pi}{2}$

21. State Laurent's Theorem.

22. If $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=\mathrm{y}$, then show that $\lim _{n \rightarrow \infty} z_{n}=z$ where $z_{n}=x_{n}+i y_{n}$ and $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
23. Find the residues at singular points of the function $\frac{z^{3}+2 z}{(z-i)^{3}}$
24. Using Cauchy's residue theorem evaluate $\int_{C} \frac{2 z^{2}+2}{z^{2}-1} \mathrm{dz}$ where C is the circle $|\mathrm{z}-1|=1$ in counter clockwise sense.
25. Define isolated singular point at infinity and residue at infinity.
26. Evaluate the integral $\int_{0}^{\infty} \frac{1}{x^{2}+1} \mathrm{dx}$ using residues.
($10 \times 4=40$ Marks)

Part-C

Answer any six questions. Each question carries 7 marks.
27. Derive the Cauchy Reimann equations of analytic functions.
28. If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is analytic function of $z=x+i y$ then find $f(z)$ in terms of z
29. Find all values of
a) $\sin ^{-1}(-i)$
b) $\tan ^{-1}(2 \mathrm{i})$
30. Let C be the arc of the circle $|\mathrm{z}|=2$ from $\mathrm{z}=2$ to $\mathrm{z}=2 \mathrm{i}$ that lies in the first quadrant. Show that $\left|\int_{C} \frac{1}{z^{2}-1} d z\right| \leq \frac{\pi}{3}$ without evaluating the integral.
31. State and prove Cauchy's in equality.
32. Find all Laurent series of $\frac{1}{z^{3}-\mathrm{z}^{4}}$ with centre 0
33. a) Define Circle of convergence and radius of convergence of the power series.
b) Find the circle of convergence and radius of convergence of the series $\sum_{n=0}^{\infty} \frac{n!}{n^{n}} z^{n}$
34. State and prove Cauchy's Residue Theorem.
35. Show that $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}} \quad a>b>0$

Part-D

Answer any two questions. Each question carries 13 marks.
36. If $\mathrm{f}(\mathrm{z})$ is a regular function of z , then show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
37. State and prove Cauchy's Integral formula.
38. a) Show that $\int_{-\infty}^{\infty}\left(\frac{2 x^{2}-1}{x^{4}+5 x^{2}+4}\right) d x=\frac{\pi}{2}$
b) If $\mathrm{a}>0, \mathrm{~b}>0$ then show that $\int_{0}^{\infty}\left(\frac{\cos a x}{x^{2}+b^{2}}\right) \mathrm{dx}=\frac{\pi}{2 b} e^{-a b}$

