\qquad
2019

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Supplementary/Improvement)
(CUCBCSS-UG)
CC15U MAT6 B11 - NUMERICAL METHODS
Mathematics - Core Course
(2015 Admission onwards)
Time: Three Hours
Part-A
Answer all questions. Each question carries 1 mark

1. Give an example of transcendental equation.
2. Write Newton - Raphson formula for the approximate root of transcendental equation.
3. Find $\Delta^{2} x$
4. Define the mean operator μ
5. Define the central difference operator δ
6. Define interpolation.
7. Write the relation between the forward difference operator Δ and differential operator D.
8. By Simpson's $\frac{1}{3}$-rule $\int_{x_{0}}^{x_{n}} y d x=\cdots$
9. Write the Trapezoidal rule for numerical integration.
10. Define the characteristic equation of a square matrix A
11. Define spectrum of a square matrix.
12. Write the second order Runge-Kutta formula.

Part-B
Answer any ten questions. Each question carries 4 marks.
13. Explain Bisection Method.
14. Find a real root of $x^{3}-x-4=0$ by the method of false position
15. Prove that $\nabla E=\delta E^{\frac{1}{2}}$
16. Given $u_{x}=e^{a x+b}$, then find $\Delta^{n} u_{x}$
17. Prove that $\mu^{2}=1+\left(\frac{1}{4}\right) \delta^{2}$
18. Draw the table for Gauss Central difference backward formula
19. Prove that the divided difference of a constant is zero.
20. Prove that the divided differences are symmetric functions of their arguments.
21. Use Simpsons $\frac{3}{8}$ Rule, find $\int_{1.6}^{2.2} y d x$ from the table

x	1.6	1.8	2	2.2
y	4.953	6.05	7.389	9.025

22. Find the Eigen values of the matrix $\left[\begin{array}{ll}2 & 4 \\ 0 & 1\end{array}\right]$
23. Decompose the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ in to the form $L U$, where L is the lower triangular matrix and U is an upper triangular matrix.
24. Find $y(0.01)$ by Euler's method, given that $y^{\prime}=x y$ and $y(0)=1$
25. Find the first approximation for y from the differential equation $y^{\prime}=x+y$ with $y(0)=1$, using Picard's method.
26. Give the predictor-corrector formula by Adams-Moulton method.
($10 \times 4=40$ Marks $)$

Part-C

Answer any six questions. Each question carries 7 marks.
27. Find the smallest root of the equation $x^{3}-6 x^{2}+11 x-6=0$, using Ramanujan's Method.
28. Solve by Secant method to find a real root of $x^{3}-2 x-5=0$
29. Find the value of $y(0.05)$ from the following table using Newton's forward difference interpolation formula

x	0	0.1	0.2	0.3	0.4
y	1	1.2214	1.4918	1.8221	2.2255

30. Use Lagrange formula to find a cubic polynomial which approximate the following data

x	-2	-1	2	3
y	-12	-8	3	5

31. Find x for $\sinh x=62$ from the table

x	4.80	4.81	4.82	4.83	4.84
$y=\sinh x$	60.7511	61.3617	61.9785	62.6015	63.2317

32. Find $\frac{d y}{d x}$ at $x=1$ and at $x=3$ from the computed table

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.451	8.7506	9.0309

33. Solve using Gauss elimination method

$$
\begin{aligned}
x+y+z & =9 \\
2 x-3 y+4 z & =13 \\
3 x+4 y+5 z & =40
\end{aligned}
$$

34. Find the inverse of the matrix $\left[\begin{array}{ccc}4 & -1 & 2 \\ -1 & 2 & 3 \\ 5 & -7 & 9\end{array}\right]$ by $L U$ decomposition method.
35. Using $4^{\text {th }}$ order Runge-Kutta method evaluate $y(0.2)$ and $y(0.4)$ where $\frac{d y}{d x}=1+y^{2}$ and $y(0)=0$
($6 \times 7=42$ Marks $)$

Part- D

Answer any two questions. Each question carries 13 marks.
36. (a) Find a double root of $f(x)=x^{3}-7 x^{2}+16 x-12$ by using generalized Newton's method with $x=1.5$
(b) Solve the equation $x^{3}-9 x+1$ for the root lying between 2 and 3 , correct to 3significant figures.
37. From the following table find the number of students who obtained marks between 60 and 70 using Gauss backward interpolation formula

Marks	No of Students
$0-40$	250
$40-60$	120
$60-80$	100
$80-100$	70
$100-120$	50

38. (a) Explain Predictor-Corrector Milne's method.
(b) Find $y(0.3)$ for the differential equation $\frac{d y}{d x}=x^{2}+y^{2}-2$ satisfying $y(-0.1)=1.09$ $y(0)=1, y(0.1)=0.89, y(0.2)=0.7605$
