16U603

(Pages:

SIXTH SEMESTER B.Sc. DEGREE

(Regular/Supplementar (CUCBCSS-

CC15U MAT6 B11 - NUME

Mathematics - Co (2015 Admission

Time: Three Hours

Part-A

Answer all questions. Each qu

- 1. Give an example of transcendental equation.
- 2. Write Newton Raphson formula for the approximate root of transcendental equation.
- 3. Find $\Delta^2 x$
- 4. Define the mean operator μ
- 5. Define the central difference operator δ
- 6. Define interpolation.
- 7. Write the relation between the forward difference operator Δ and differential operator *D*.
- 8. By Simpson's $\frac{1}{3}$ -rule $\int_{x_0}^{x_n} y \, dx = \cdots$
- 9. Write the Trapezoidal rule for numerical integration.
- 10. Define the characteristic equation of a square matrix A
- 11. Define spectrum of a square matrix.
- 12. Write the second order Runge-Kutta formula.

Part-B

Answer any *ten* questions. Each question carries 4 marks.

13. Explain Bisection Method.

14. Find a real root of $x^3 - x - 4 = 0$ by the method of false position.

15. Prove that $\nabla E = \delta E^{\frac{1}{2}}$

16. Given $u_x = e^{ax+b}$, then find $\Delta^n u_x$

17. Prove that $\mu^2 = 1 + \left(\frac{1}{4}\right)\delta^2$

18. Draw the table for Gauss Central difference backward formula.

19. Prove that the divided difference of a constant is zero.

20. Prove that the divided differences are symmetric functions of their arguments.

21. Use Simpsons $\frac{3}{8}$ Rule, find $\int_{1.6}^{2.2} y dx$ from the table

Х	1.6	1.8	2
У	4.953	6.05	7.38
			(1)

3)	Name:
	Reg. No
EXAMINAT	ION, APRIL 2019
y/Improveme	nt)
-UG)	
ERICAL ME	THODS
ore Course	
onwards)	
	Maximum: 120 Marks
L	
uestion carrie	s 1 mark.

 $(12 \times 1 = 12 \text{ Marks})$

	2.2
9	9.025

Turn Over

22. Find the Eigen values of the matrix $\begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix}$

23. Decompose the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ in to the form *LU*, where *L* is the lower triangular matrix and U is an upper triangular matrix.

24. Find y(0.01) by Euler's method, given that y' = xy and y(0) = 1

25. Find the first approximation for y from the differential equation y' = x + y with y(0) = 1, using Picard's method.

26. Give the predictor-corrector formula by Adams-Moulton method.

$(10 \times 4 = 40 \text{ Marks})$

Part-C

Answer any six questions. Each question carries 7 marks.

- 27. Find the smallest root of the equation $x^3 6x^2 + 11x 6 = 0$, using Ramanujan's Method.
- 28. Solve by Secant method to find a real root of $x^3 2x 5 = 0$
- 29. Find the value of y(0.05) from the following table using Newton's forward difference interpolation formula

Х	0	0.1	0.2	0.3	0.4
у	1	1.2214	1.4918	1.8221	2.2255

30. Use Lagrange formula to find a cubic polynomial which approximate the following data

х	-2	-1	2	3	
У	-12	-8	3	5	

31. Find x for sinhx = 62 from the table

x	4.80	4.81	4.82	4.83	4.84
y = sinhx	60.7511	61.3617	61.9785	62.6015	63.2317

32. Find $\frac{dy}{dx}$ at x = 1 and at x = 3 from the computed table

x	0	1	2	3	4	5	6
у	6.9897	7.4036	7.7815	8.1291	8.451	8.7506	9.0309

33. Solve using Gauss elimination method

$$x + y + z = 9$$

2x - 3y + 4z = 13
3x + 4y + 5z = 40

34. Find the inverse of the matrix $\begin{bmatrix} 4 & -1 & 2 \\ -1 & 2 & 3 \\ 5 & -7 & 9 \end{bmatrix}$ by *LU* decomposition method.

35. Using 4th order Runge-Kutta method evaluate y(0.2) and y(0.4) where $\frac{dy}{dx} = 1 + y^2$ and y(0) = 0

Part- D

Answer any *two* questions. Each question carries 13 marks.

method with x = 1.5

significant figures.

37. From the following table find the number of students who obtained marks between 60 and 70 using Gauss backward interpolation formula

Marks	No of Students
0-40	250
40-60	120
60-80	100
80-100	70
100-120	50

38. (a) Explain Predictor-Corrector Milne's method.

(b) Find y(0.3) for the differential equation $\frac{dy}{dx} = x^2 + y^2 - 2$ satisfying y(-0.1) = 1.09 y(0) = 1, y(0.1) = 0.89, y(0.2) = 0.7605

(3)

16U603

 $(6 \times 7 = 42 \text{ Marks})$

36. (a) Find a double root of $f(x) = x^3 - 7x^2 + 16x - 12$ by using generalized Newton's

(b) Solve the equation $x^3 - 9x + 1$ for the root lying between 2 and 3, correct to 3-

 $(2 \times 13 = 26 \text{ Marks})$