\qquad
\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2019
(Regular/Supplementary/Improvement) (CUCBCSS-UG)

CC15U MAT6 B12 - NUMBER THEORY AND LINEAR ALGEBRA

Mathematics - Core Course
(2015 Admission onwards)
Time: Three Hours
Maximum: 120 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Find the gcd of 7469 and 3387
2. What is Euclid's Lemma?
3. Show that the product of any two integers of the form $3 k+1$ is also of the same form.
4. Explain the Sieve of Eratosthenes.
5. Show by an example that $\mathrm{a}^{2} \equiv \mathrm{~b}^{2}(\bmod n)$ need not imply $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$
6. Give the binary representation of the number 372 which is in the decimal representation.
7. Find the number and sum of divisors of 360
8. Is $\{(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) / \mathrm{x}=\mathrm{y}, \mathrm{z}=\mathrm{t}\}$ where x, y, z, t are real numbers is a subspace of \mathbb{R}^{4}
9. Whether $S=\{(1,1),(1,-1)\}$ is a basis of \mathbb{R}^{2}. Explain why?

10 . Is $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x-y, x, y)$ is linear.
11. If $f: U \rightarrow V$ is linear and if f is injective, show that $\operatorname{Ker} f=\left\{0_{v}\right\}$
12. Show that if U and V are vector spaces of the same dimension, then U and V are isomorphic.

$$
(12 \times 1=12 \text { Marks })
$$

Section B

Answer any ten questions. Each question carries 4 marks.
13. Prove that $(n(n+1)(2 n+1)) / 6$ is an integer for $n \geq 1$
14. Use Euclidean Algorithm to find the integers x and y, such that $g c d$ $(24,138)=24 x+138 y$
15. Determine all solutions of the Diophantine equation $172 \mathrm{x}+20 \mathrm{y}=1000$
16. If p is a prime and p / ab, then prove that ${ }^{p} / a$ or p / b
17. Prove that the number of primes is infinite.
18. If $\mathrm{N}=\mathrm{a}_{m} 10^{\mathrm{m}}+a_{\mathfrak{m}-1} 10^{\mathrm{m}-1}+\cdots+a_{1} 10+a_{0}$ be the decimal expansion of the positive integer $\mathrm{N}, 0 \leq a_{k}<10$ and let $\mathrm{S}=a_{0}+a_{1}+a_{2}+\ldots \ldots a_{\mathrm{m}-1}+a_{\mathrm{m}}$, then prove that $\frac{9}{N}$ if and only if $\frac{9}{S}$
19. Show that $n^{7}-n$ is divisible by 42
20. Find the remainder when 15 ! is divided by 17
21. Find the smallest number with 20 divisors.
22. If p is a prime number and $\mathrm{k}>0$, then prove that $\varphi\left(\mathrm{p}^{\mathrm{k}}\right)=\mathrm{p}^{\mathrm{k}}\left(1-\frac{1}{\mathrm{p}}\right)$
23. Show that if S is a nonempty subset of a vector space V, then span S is a subspace of V
24. If V has a finite basis then prove that all linearly independent subsets of V are finite.

25 . Determine the subspaces of \mathbb{R}^{2} with dimensions 0,1 and 2
26. Show that the map $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{2}[\mathrm{x}]$ defined by $\mathrm{T}(a, b, c)=\mathrm{a}+b c x+x^{2}$ is not linear.

$$
(10 \times 4=40 \text { Marks })
$$

Section C

Answer any six questions. Each question carries 7 marks.
27. Is the set of symmetric $n \times n$ matrices is a subspace of the set of all $n \times n$ matrices over \mathbb{R} ?
28. Solve $x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7)$
29. State and prove Wilsons Theorem.
30. Prove that $\operatorname{gcd}\left(a+b, a^{2}+b^{2}\right)=1$ or 2
31. State and prove Division Algorithm.
32. Using congruences solve the Diophantine equation $15 x+21 y=39$
33. If $\{u, v, w\}$ is linearly independent, show that $\{u-v, v-w, w-u\}$ is linearly independent.
34. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear map defined by $T(x, y, z, t)=(x-y, 0, z-t)$, then find null space, image, nullity and rank of T.
35. Let $f: U \rightarrow V$ be a linear map. Prove that if X is a subspace of U then $f(X)$ is a subspace of V and if Y is a subspace of V then $f \leftarrow(Y)$ is a subspace of U.

$$
(6 \times 7=42 \text { Marks })
$$

Section D

Answer any two questions. Each question carries 13 marks.
36. State and prove Chinese Remainder Theorem.
37. State and prove Unique Factorisation Theorem.
38. State and prove Dimension Theorem.

$$
(2 \times 13=26 \text { Marks })
$$

