18U501

(Pages: 3

FIFTH SEMESTER B.Sc. DEGREE EX.

(CUCBCSS

(Regular/Supplementar

CC15U MAT5 B05/CC18U MAT5

(Mathematics - C (2015-Admission

Time: Three Hours

Section A

Answer *all* questions. Each question carries 1 mark.

- 1. Find domain of the function $f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$
- 2. Evaluate the limit $\lim_{(x,y)\to(0,0)} \frac{e^{\sqrt{y}sinx}}{x}$

$$f(x,y) = 9x^2y + 8xy^2 - 12xy + 3$$

- 4. What is $\frac{dw}{dt}$ when $w = sinh^{-1}x$, where $x = t^3$
- 5. State Taylors formula.
- 6. If $f(x, y, z) = 4x^2yz y^3z^2$, find ∇f
- (-1, 2, 0).
- 8. Evaluate $\int_{1}^{2} \int_{0}^{1} (x^{2} + y) dx dy$.
- 9. Find the Jacobian of the transformation $x = r \cos \theta$, $y = r \sin \theta$
- 10. Give a parametrization of the cylinder $(x 2)^2 + y^2 = 16$, $0 \le z \le 6$.
- 11. Find the curl of $\mathbf{F}(x, y) = (3x^2 2y)\mathbf{i} + (2xy y^2)\mathbf{j}$.
- 12. Check whether $\mathbf{F} = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ is solenoidal.

Section B

Answer any ten questions. Each question carries 4 marks.

- the tangent to the parabola at (2, 3, 13).
- 14. Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment C joining the origin and the point (1, 1, 1).

15. If
$$z = tan^{-1}\frac{y}{x}$$
, find $\frac{\partial^2 z}{\partial x^2}$.

(1)

3)	Name:	••
	Reg. No	
XAMINATI	ON, NOVEMEBR 2020	
S-UG)		
ry/Improver	nent)	
B05 - VEC	FOR CALCULUS	
ore Course)		
n onwards)		
	Maximum: 120 Mark	S

3. Find the first order partial derivative of f(x) with respect to x at the point (2,0), where 3y - 5

7. Find an equation for the tangent plane to the surface $xy^2 - 2xz + yz^2 = 1$ at the point

(12 x 1 = 12 Marks)

13. The plane x = 2 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of

Turn Over

16. What is the linearization L(x, y) of the function $f(x, y) = x^2 + y^2 + 1$ at (1, 1).

17. If $w = x^2 + y - z + sint$ and x + y = t, find $\left(\frac{\partial w}{\partial x}\right)_{y,z}$

- 18. Find the direction in which f increases most rapidly at the point (1,1,0), if $f(x, y, z) = e^{xy} \cos z$.
- 19. Find the local extreme values of the function $f(x, y) = x^2 + xy + 3x + 2y + 5$.
- 20. Using Taylor's formula for f(x, y) at the origin, find a cubic approximation of $f(x, y) = xe^{y}$ near the origin.
- 21. Find the area enclosed between x = 2, x = 8 and y = x, y = x 1.
- 22. Evaluate the cylinder co-ordinate integral $\int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^2}} dz r dr d\theta$.
- 23. Calculate the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$.
- 24. Calculate the work done by $\mathbf{F} = (x y)\mathbf{i} + (y z)\mathbf{j} + (z x)\mathbf{k}$ over the curve $r(t) = ti + 2tj + 3tk; 0 \le t \le 1$ from (0,0,0) to (1,2,3).
- 25. Evaluate the circulation of the field $\mathbf{F} = (x y)\mathbf{i} + x\mathbf{j}$ around the circle

 $\mathbf{r}(t) = cost\mathbf{i} + sint\mathbf{j}, \ 0 \le t \le 2\pi.$

26. Show that $\mathbf{F} = (2x - 3y)\mathbf{i} + 2zx\mathbf{j} + sinz\mathbf{k}$ is not conservative.

(10 x 4 = 40 Marks)

Section C

Answer any *six* questions. Each question carries 7 marks.

- 27. Using two path test, show that $f(x, y) = \frac{4x^7 y^3}{x^{14} + y^6}$ has no limit as (x, y) approaches (0, 0). 28. If $v = \frac{1}{r}$ and $r^2 = x^2 + y^2$, show that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{1}{r^3}$.
- 29. Find the greatest and smallest values that the function f(x, y) = xy takes on the ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1.$
- 30. Evaluate $\iint xydxdy$ over the first quadrant of the circle $x^2 + y^2 = a^2$.
- 31. Find the volume of the upper region D cut from the solid sphere $\rho \le 1$ by the cone $\phi = \frac{\pi}{3}$.
- 32. Calculate the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 33. Find the area of the cap cut from the hemisphere $x^2 + y^2 + z^2 = 2$, $z \ge 0$ by the cylinder $x^2 + y^2 = 1.$
- 34. Using Stoke's theorem, evaluate $\oint \mathbf{F} d\mathbf{r}$ for the hemisphere $S: x^2 + y^2 + z^2 = 9$, $z \ge 0$, its bounding circle $C: x^2 + y^2 = 9$, z = 0 and the field $\mathbf{F} = y\mathbf{i} - x\mathbf{j}$.

35. Verify that $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \, dV$ for the field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$.

Section D

- 37. Show that $2xydx + (x^2 z^2)dy 2yzdz$ is exact. Hence find the value of the (1.2.3)

integral
$$\int_{(0,0,0)}^{(1,2,3)} 2xydx + (x^2 - z^2)dy - 2y$$

38. Write the normal form and tangential form of Green's theorem. Verify the tangential form of Green's theorem if M = xy and $N = x^2$, where C is the

18U501

(6 x 7 = 42 Marks)

Answer any two questions. Each question carries 13 marks.

36. Change the order of integration and evaluate the double integral $\int_0^1 \int_x^{2-x} \frac{x}{y} dy dx$.

2vzdz.

curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x.

 $(2 \times 13 = 26 \text{ Marks})$