18U501
 (Pages: 3)
 Name: .
 Reg. No...

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMEBR 2020 (CUCBCSS-UG)
(Regular/Supplementary/Improvement)

CC15U MAT5 B05/CC18U MAT5 B05 - VECTOR CALCULUS

Mathematics - Core Course)

(2015-Admission onwards)
Time: Three Hours

Section A

Answer all questions. Each question carries 1 mark.

1. Find domain of the function $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$
2. Evaluate the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{\sqrt{y}} \sin x}{x}$
3. Find the first order partial derivative of $f(x)$ with respect to x at the point $(2,0)$, where

$$
f(x, y)=9 x^{2} y+8 x y^{2}-12 x y+3 y-5
$$

4. What is $\frac{d w}{d t}$ when $w=\sinh ^{-1} x$, where $x=t^{3}$
5. State Taylors formula
6. If $f(x, y, z)=4 x^{2} y z-y^{3} z^{2}$, find ∇f
7. Find an equation for the tangent plane to the surface $x y^{2}-2 x z+y z^{2}=1$ at the point $(-1,2,0)$.
8. Evaluate $\int_{1}^{2} \int_{0}^{1}\left(x^{2}+y\right) d x d y$.
9. Find the Jacobian of the transformation $x=r \cos \theta, y=r \sin \theta$
10. Give a parametrization of the cylinder $(x-2)^{2}+y^{2}=16,0 \leq z \leq 6$.
11. Find the curl of $\mathbf{F}(x, y)=\left(3 x^{2}-2 y\right) \boldsymbol{i}+\left(2 x y-y^{2}\right) \boldsymbol{j}$
12. Check whether $\mathbf{F}=y z \boldsymbol{i}+x z \boldsymbol{j}+x y \boldsymbol{k}$ is solenoidal
($12 \times 1=12$ Marks $)$

Section B

Answer any ten questions. Each question carries 4 marks
13. The plane $x=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in a parabola. Find the slope of the tangent to the parabola at $(2,3,13)$
14. Integrate $f(x, y, z)=x-3 y^{2}+z$ over the line segment C joining the origin and the point $(1,1,1)$
15. If $z=\tan ^{-1} \frac{y}{x}$, find $\frac{\partial^{2} z}{\partial x^{2}}$
16. What is the linearization $L(x, y)$ of the function $f(x, y)=x^{2}+y^{2}+1$ at $(1,1)$.
17. If $w=x^{2}+y-z+\operatorname{sint}$ and $x+y=t$, find $\left(\frac{\partial w}{\partial x}\right)_{y, z}$
18. Find the direction in which f increases most rapidly at the point $(1,1,0)$, if $f(x, y, z)=e^{x y} \cos z$.
19. Find the local extreme values of the function $f(x, y)=x^{2}+x y+3 x+2 y+5$.
20. Using Taylor's formula for $f(x, y)$ at the origin, find a cubic approximation of $f(x, y)=x e^{y}$ near the origin.
21. Find the area enclosed between $x=2, x=8$ and $y=x, y=x-1$.
22. Evaluate the cylinder co-ordinate integral $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} d z r d r d \theta$.
23. Calculate the area enclosed by the lemniscate $r^{2}=4 \cos 2 \theta$.
24. Calculate the work done by $\mathbf{F}=(x-y) \boldsymbol{i}+(y-z) \boldsymbol{j}+(z-x) \boldsymbol{k}$ over the curve $\boldsymbol{r}(t)=t \boldsymbol{i}+2 t \boldsymbol{j}+3 t \boldsymbol{k} ; 0 \leq t \leq 1$ from $(0,0,0)$ to $(1,2,3)$.
25. Evaluate the circulation of the field $\mathbf{F}=(x-y) \boldsymbol{i}+x \boldsymbol{j}$ around the circle

$$
\boldsymbol{r}(t)=\cos t \boldsymbol{i}+\sin t \boldsymbol{j}, 0 \leq t \leq 2 \pi
$$

26. Show that $\mathbf{F}=(2 x-3 y) \boldsymbol{i}+2 z x \boldsymbol{j}+\sin z \boldsymbol{k}$ is not conservative.

($10 \times 4=40$ Marks)

Section C

Answer any six questions. Each question carries 7 marks.
27. Using two path test, show that $f(x, y)=\frac{4 x^{7} y^{3}}{x^{14}+y^{6}}$ has no limit as (x, y) approaches $(0,0)$.
28. If $v=\frac{1}{r}$ and $r^{2}=x^{2}+y^{2}$, show that $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{1}{r^{3}}$.
29. Find the greatest and smallest values that the function $f(x, y)=x y$ takes on the

$$
\text { ellipse } \frac{x^{2}}{8}+\frac{y^{2}}{2}=1
$$

30. Evaluate $\iint x y d x d y$ over the first quadrant of the circle $x^{2}+y^{2}=a^{2}$.
31. Find the volume of the upper region D cut from the solid sphere $\rho \leq 1$ by the cone $\phi=\frac{\pi}{3}$.
32. Calculate the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
33. Find the area of the cap cut from the hemisphere $x^{2}+y^{2}+z^{2}=2, z \geq 0$ by the cylinder $x^{2}+y^{2}=1$.
34. Using Stoke's theorem, evaluate $\oint \mathbf{F} . d \boldsymbol{r}$ for the hemisphere $S: x^{2}+y^{2}+z^{2}=9, z \geq 0$, its bounding circle $C: x^{2}+y^{2}=9, z=0$ and the field $\mathbf{F}=y \boldsymbol{i}-x \boldsymbol{j}$.
35. Verify that \iint_{S} F. $\boldsymbol{n} d \sigma=\iiint_{D} \nabla . \mathbf{F} d V$ for the field $\mathbf{F}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(6 x 7 = 42 Marks)

Section D

Answer any two questions. Each question carries 13 marks.
36. Change the order of integration and evaluate the double integral $\int_{0}^{1} \int_{x}^{2-x} \frac{x}{y} d y d x$.
37. Show that $2 x y d x+\left(x^{2}-z^{2}\right) d y-2 y z d z$ is exact. Hence find the value of the integral $\int_{(0,0,0)}^{(1,2,3)} 2 x y d x+\left(x^{2}-z^{2}\right) d y-2 y z d z$.
38. Write the normal form and tangential form of Green's theorem.

Verify the tangential form of Green's theorem if $M=x y$ and $N=x^{2}$, where C is the curve enclosing the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
($\mathbf{2} \times 13=26$ Marks)

