(Pages: 2)

Name: Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMEBR 2020

(CUCBCSS-UG)

(Regular/Supplementary/Improvement)

CC15U MAT5 B06/CC18U MAT5 B06 - ABSTRACT ALGEBRA

(Mathematics - Core Course)

(2015 Admission onwards)

Time: Three Hours

Maximum: 120 Marks

Section A

Answer *all* questions. Each question carries 1 mark.

- 1. Order of an identity element of a group is
- 2. Give an example of a finite non abelian group.
- 3. Define a permutation on a set.
- 4. Number of elements in the group A₄ is
- 5. Define index of a subgroup H of G.
- 6. State TRUE/FALSE: f: GL(n, R) $\rightarrow \langle R, \cdot \rangle$ defined by f(A)= det(A) is a homomorphism.
- 7. State TRUE/FALSE: { ρ_0 , ρ_1 , ρ_2 ,} is a subgroup of S₃.
- 8. Give an example of a ring which is not a field.
- 9. Characteristic of ring Z₆ is
- 10. What are the units of the ring $\langle Z, +, \bullet \rangle$
- 11. Define zero divisors of a ring.
- 12. Compute (12)(3) in Z₁₈.

(12 x 1 = 12 Marks)

Section **B**

Answer any ten questions. Each question carries 4 marks.

13. Define a group. Is the set of natural numbers a group under addition?

- 14. Show that {1, -1, i, -i} form a group under multiplication.
- 15. Show that identity element in a group is unique.
- 16. Let G be a group then prove that $(a^{-1})^{-1} = a$ for all $a \in G$.
- 17. Describe Klein 4-group.
- 18. Show that if x * x = e for all x in a group G, then G abelian.
- 19. Let G be a group and let $a \in G$. Then prove that $H = \{a^n : n \in Z\}$ is a subgroup of G.

18U502

- 20. Describe all the elements in the cyclic subgroup generated by $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ of GL(2, R)
- 21. Define Cosets. What are the cosets of 4Z in Z?
- 22. A group homomorphism $\phi: G \to G'$ is one to one if and only if $Ker(\phi) = \{e\}$
- 23. Show that identity element is preserved under a group homomorphism.
- 24. Define a ring. Give an example.
- 25. Define Kernel of a homomorphism. What is the kernel of the natural homomorphism from Z to Z₄?
- 26. Show that in a ring R, $a \cdot 0 = 0 \cdot a = 0$ for all a in R

(10 x 4 = 40 Marks)

Section C

Answer any *six* questions. Each question carries 7 marks.

- 27. Show that subgroup of a cyclic group is cyclic.
- 28. Show that a finite cyclic group of order n is isomorphic to Z_n .
- 29. If H & K are subgroups of a group G, show that H∩K is a subgroup of G. Is HUK is a subgroup? Justify.
- 30. In the ring \mathbb{Z}_n the division of zero are precisely those nonzero elements that are not relatively prime to *n*.
- 31. Draw the lattice diagram of Z_{18} .
- 32. Show that the collection of all permutations S_A on a non empty set A is a group under permutation multiplication.
- 33. Show that the set of all even permutations in S_n is a group.
- 34. Let $\varphi: G \to G'$ be a group homomorphism. Show that if $H \leq G$ then $\varphi[H] \leq G'$
- 35. Show that the characteristics of an integral domain D must be either 0 or a prime p.

$(6 \times 7 = 42 \text{ Marks})$

Section D

Answer any *two* questions. Each question carries 13 marks.

36. Show that symmetries of a triangle form a group. Draw it's subgroup diagram.

- 37. (a) State and prove Lagrange's theorem.
 - (b) Show that every group of prime order is Cyclic.
 - (c) Show that order of an element of a finite group divides the order of the group.
- 38. (a) Show that every field is an integral domain.
 - (b) Show that every finite integral domain is a field.

$(2 \times 13 = 26 \text{ Marks})$
