18U503

(Pages: 3

FIFTH SEMESTER B.Sc. DEGREE EX

(CUCBCSS (Regular/Supplementar CC15U MAT5 B07/CC18U MAT5 B07 - BA (Mathematics - Co (2015 Admission

Time: Three Hours

Section

Answer all questions. Each q

1. Determine the set $\{x \in \mathbb{N}: x^2 + 3x - 4 = 0\}$

2. If *A*, *B*, *C* are sets, then prove that $(A \setminus B) \cap$

3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ and

4. If $a \in \mathbb{R}$, then show that $a \cdot 0 = 0$

5. Find the ϵ - neighborhood of a, where $\epsilon = 1$

6. If $\inf S = 2$, then find $\inf(3 + S)$, where 3 + 3

7. Find $\lim_{n \to \infty} \left(\frac{2n^2 - 1}{n^2 + 1} \right)$

8. Show that 2 is not a limit of the sequence (1

9. Find the total length of the removed interval

10. Find the multiplicative inverse of z = 3 + i

11. Evaluate Re $\frac{1}{2-i}$

12. Find Arg $(2 + i\sqrt{3})$

Section B

Answer any *ten* questions. Each question carries 4 marks.

and $B = \{y \in \mathbb{R} : y = 1 \text{ or } y = 2\}$

14. Prove that the set 2N is denumerable.

15. Determine the set $A = \{x \in \mathbb{R} : |x + 1| < |x - 1|\}$ 16. If $a, b \in \mathbb{R}$, then prove that $||a| - |b|| \le |a - b|$ 17. Prove that if $x \in \mathbb{R}$, then there exists $n \in \mathbb{N}$ such that x < n18. If x and y are any real numbers with x < y, then prove that there exists an irrational

- number *z* such that x < z < y

(1)

3)	Name:
	Reg. No
XAMINATION, NOVEMEBR 2020	
S-UG)	
ry/Improvement)	
ASIC MATHEMATICAL ANALYSIS	
Core Course)	
n onwards)	
	Maximum: 120 Marks
A	
question carries 1	mark.
}	
$\cap (A \backslash \mathcal{C}) \subseteq A \backslash (B$	∪ <i>C</i>)
let $E = \{x : 0 \le$	$x \le 1$. Find $f^{-1}(f(E))$
1 and $a = -1$	
$+S = \{3 + s : s \in$	= {}
	_ ; ;
1,2,1,2,1,2,)	
ls of Cantor set.	

13. Draw the diagram in the plane of the Cartesian product $A \times B$, if $A = \{x \in \mathbb{R} : 0 \le x \le 1\}$

 $(12 \times 1 = 12 \text{ Marks})$

Turn Over

- 19. Suppose that *A* and *B* are nonempty subsets of \mathbb{R} that satisfy the property $a \leq b$ for all $a \in A$ and all $b \in B$. Then prove that $\sup A \leq \inf B$
- 20. If $X = (x_1, x_2, \dots, x_n, \dots)$ be a sequence of real numbers and let $m \in \mathbb{N}$. Prove that if the *m*-tail $X_m = (x_{m+1}, x_{m+2}, ..., x_{m+n}, ...)$ of X converges then X converges.
- 21. If 0 < b < 1, then show that $\lim(b^n) = 0$

22. Show
$$\lim_{n \to \infty} \left((n)^{\frac{1}{n}} \right) = 1$$
.

- 23. Show that the Cantor set \mathbb{F} has infinitely many points.
- 24. Find the equation of the circle with center z_0 and radius r.
- 25. If z_1 and z_2 are any two complex numbers, then prove that $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$
- 26. Sketch the region satisfying Re z ≤ 2 and Im z ≥ 2

 $(10 \times 4 = 40 \text{ Marks})$

Section C

Answer any *six* questions. Each question carries 7 Marks

- 27. Let *S* be a subset of N that possesses the two properties:
 - (*i*) The number $1 \in S$

```
(ii) For every k \in \mathbb{N}, k \in S, then k + 1 \in S
```

- Prove that $S = \mathbb{N}$.
- 28. Let $a, b \in \mathbb{R}$

(*i*) If a.b = 0, then prove that either a = 0 or b = 0

- (*ii*) If $a \neq 0$, and a, b = 1, then prove that $b = \frac{1}{a}$
- 29. Let $S = \{s \in \mathbb{R} : 0 \le s, s^2 < 2\}$. Prove that sup S exists and $(\sup S)^2 = 2$
- 30. Prove that an upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for

every $\epsilon > 0$ there exists an $s \in S$ such that $u - \epsilon < s$.

31. Let (x_n) be a sequence of real numbers that converges to x and let

$$p(t) = a_k t^k + a_{k-1} t^{k-1} + \dots + a_1 t + a_0$$
 be a polynomial in t. Prove the sequence $(p(x_n))$ converges to $p(x)$

- 32. If $X = (x_n)$ is a bounded decreasing sequence, then prove that $\lim(x_n) = \inf \{x_n : n \in \mathbb{N}\}$
- 33. Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
- 34. If the complex numbers z_1, z_2, z_3 are the vertices of an equilateral triangle, prove that

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$$

35. Find the three cube roots of -8i.

 $(6 \times 7 = 42 \text{ Marks})$

- Section D
- Answer any *two* questions. Each question carries 13 marks.
- 36. (a) Suppose that S and T are sets and $T \subseteq S$. If S is a finite set, then prove that T is a finite set.
 - (b) If A is any set, then prove that there is no surjection of A onto the set $\mathcal{P}(A)$ of all subsets of A.
- 37. (a) If S is a subset of \mathbb{R} that contains at least two points. Suppose S has the property if

 $x, y \in S$ and x < y, then $[x, y] \subseteq S$. Prove that S is an interval.

- (b) Prove that \mathbb{R} is uncountable.
- 38. (a) Prove that if $X = (x_n)$ is a sequence of real numbers, then there is a subsequence

of X that is monotone.

(b) Prove that a Cauchy sequence of real numbers is bounded.

18U503

 $(2 \times 13 = 26 \text{ Marks})$