\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMEBR 2020

 (CUCBCSS-UG)(Regular/Supplementary/Improvement)
CC15U MAT5 B07/CC18U MAT5 B07 - BASIC MATHEMATICAL ANALYSIS
(Mathematics - Core Course)
(2015 Admission onwards)
Time: Three Hours

Section A

Answer all questions. Each question carries 1 mark.

1. Determine the set $\left\{x \in \mathbb{N}: x^{2}+3 x-4=0\right\}$
2. If A, B, C are sets, then prove that $(A \backslash B) \cap(A \backslash C) \subseteq A \backslash(B \cup C)$
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and let $E=\{x: 0 \leq x \leq 1\}$. Find $f^{-1}(f(E))$
4. If $a \in \mathbb{R}$, then show that $a .0=0$
5. Find the ϵ - neighborhood of a, where $\epsilon=1$ and $a=-1$
6. If $\inf S=2$, then find $\inf (3+S)$, where $3+S=\{3+s: s \in S\}$
7. Find $\lim \left(\frac{2 n^{2}-1}{n^{2}+1}\right)$
8. Show that 2 is not a limit of the sequence $(1,2,1,2,1,2, \ldots)$
9. Find the total length of the removed intervals of Cantor set.
10. Find the multiplicative inverse of $z=3+i$
11. Evaluate $\operatorname{Re} \frac{1}{2-i}$
12. Find $\operatorname{Arg}(2+i \sqrt{3})$
(12× 1 = 12 Marks)

Section B

Answer any ten questions. Each question carries 4 marks
13. Draw the diagram in the plane of the Cartesian product $A \times B$, if $A=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$ and $B=\{y \in \mathbb{R}: y=1$ or $y=2\}$
14. Prove that the set $2 \mathbb{N}$ is denumerable.
15. Determine the set $A=\{x \in \mathbb{R}:|x+1|<|x-1|\}$
16. If $a, b \in \mathbb{R}$, then prove that $||a|-|b|| \leq|a-b|$
17. Prove that if $x \in \mathbb{R}$, then there exists $n \in \mathbb{N}$ such that $x<n$
18. If x and y are any real numbers with $x<y$, then prove that there exists an irrational number z such that $x<z<y$
19. Suppose that A and B are nonempty subsets of \mathbb{R} that satisfy the property $a \leq b$ for all $a \in A$ and all $b \in B$. Then prove that $\sup A \leq \inf B$
20. If $X=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$ be a sequence of real numbers and let $m \in \mathbb{N}$. Prove that if the
m-tail $X_{m}=\left(x_{m+1}, x_{m+2}, \ldots, x_{m+n}, \ldots\right)$ of X converges then X converges.
21. If $0<b<1$, then show that $\lim \left(b^{n}\right)=0$
22. Show $\lim \left((n)^{\frac{1}{n}}\right)=1$.
23. Show that the Cantor set \mathbb{F} has infinitely many points.
24. Find the equation of the circle with center z_{0} and radius r.
25. If z_{1} and z_{2} are any two complex numbers, then prove that $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
26. Sketch the region satisfying $\operatorname{Re} z \leq 2$ and $\operatorname{Im} z \geq 2$
(10×4 = 40 Marks)

Section C

Answer any six questions. Each question carries 7 Marks
27. Let S be a subset of \mathbb{N} that possesses the two properties:
(i) The number $1 \in S$
(ii) For every $k \in \mathbb{N}, k \in S$, then $k+1 \in S$

Prove that $S=\mathbb{N}$.
28. Let $a, b \in \mathbb{R}$
(i) If $a . b=0$, then prove that either $a=0$ or $b=0$
(ii) If $a \neq 0$, and $a . b=1$, then prove that $b=\frac{1}{a}$
29. Let $S=\left\{s \in \mathbb{R}: 0 \leq s, s^{2}<2\right\}$. Prove that $\sup S$ exists and $(\sup S)^{2}=2$
30. Prove that an upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon>0$ there exists an $s \in S$ such that $u-\epsilon<s$.
31. Let $\left(x_{n}\right)$ be a sequence of real numbers that converges to x and let
$p(t)=a_{k} t^{k}+a_{k-1} t^{k-1}+\cdots+a_{1} t+a_{0}$ be a polynomial in t. Prove the sequence $\left(p\left(x_{n}\right)\right)$ converges to $p(x)$
32. If $X=\left(x_{n}\right)$ is a bounded decreasing sequence, then prove that $\lim \left(x_{n}\right)=\inf \left\{x_{n}: n \in \mathbb{N}\right\}$
33. Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
34. If the complex numbers z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle, prove that

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1} .
$$

35. Find the three cube roots of $-8 i$.

Section D

Answer any two questions. Each question carries 13 marks.
36. (a) Suppose that S and T are sets and $T \subseteq S$. If S is a finite set, then prove that T is a finite set.
(b) If A is any set, then prove that there is no surjection of A onto the set $\mathcal{P}(A)$ of all subsets of A.
37. (a) If S is a subset of \mathbb{R} that contains at least two points. Suppose S has the property if $x, y \in S$ and $x<y$, then $[x, y] \subseteq S$. Prove that S is an interval.
(b) Prove that \mathbb{R} is uncountable.
38. (a) Prove that if $X=\left(x_{n}\right)$ is a sequence of real numbers, then there is a subsequence of X that is monotone.
(b) Prove that a Cauchy sequence of real numbers is bounded.
$(2 \times 13=26$ Marks $)$

