\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMEBR 2020 (CUCBCSS-UG)
 (Regular/Supplementary/Improvement)
 CC15U MAT5 B08/CC18U MAT5 B08 - DIFFERENTIAL EQUATIONS
 (Mathematics - Core Course)
 (2015 Admission onwards)

Time: Three Hours
Maximum: 120 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Determine the order of $\left(\frac{d y}{d x}\right)^{2}+y=0$.
2. Give example of a second order non-homogeneous ordinary differential equation.
3. Find an integrating factor for $\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$.
4. Determine whether $(2 x+3) d x=(2-2 y) d y$ is exact or not.
5. Find the Wronskian of $x, x e^{x}$.
6. State principle of superposition of second order linear homogeneous differential equations.
7. Use Euler's formula to write $e^{1+2 i}$ in the form of $a+i b$.
8. Find $L(t \cosh a t)$.
9. Find $L^{-1}\left(\frac{3}{s^{2}+4}\right)$.
10. Write the general form of Bernoulli Equation.
11. Transform $x_{1}^{\prime}=-2 x_{1}+x_{2}, x_{2}^{\prime}=x_{1}-2 x_{2}$ into a single equation of higher order.
12. Give example of an even function.

Section B

Answer any ten questions. Each question carries 4 marks.
13. Solve the differential equation $\frac{d y}{d t}-2 y=4-t$.
14. Show that any separable equation $M(x)+N(y) y^{\prime}=0$ is exact.
15. Find the general solution of $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
16. Solve $y^{\prime \prime}+y^{\prime}+y=0$.
17. Solve $t^{2} y^{\prime \prime}+t y^{\prime}+y=0$ for $t>0$.
18. Show that convolution integration is commutative.
19. Find $L\left(u_{1}(t)+2 u_{2}(t)-6 u_{4}(t)\right)$.
20. Show that the Laplace transform is a linear operator.
21. Transform $u^{\prime \prime}+\frac{1}{2} u^{\prime}+2 u=0$ into a system of first order equations.
22. Determine whether $f(x)=\sin \frac{\pi x}{L}$ is periodic. If so, find the fundamental period.
23. True or false: Product of an odd function and an even function is always odd. Justify.
24. Find a_{0} in the Fourier series for $f(x)=3-x,-3<x<3$
25. Use the method of separation of variables to replace the partial differential equation $t U_{x x}+x U_{t}=0$ by a pair of ordinary differential equations.
26. Solve the boundary value problem $y^{\prime \prime}+2 y=0, y(0)=1, y(\pi)=0$
($10 \times 4=40$ Marks)

Section C

Answer any six questions. Each question carries 7 marks.
27. Find the solution of the initial value problem $\frac{d y}{d x}=\frac{y \cos x}{1+2 y^{2}}, y(0)=1$
28. Given that $y_{1}(t)=\frac{1}{t}$ is a solution of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$. Find a second linearly independent solution.
29. Show that $y_{1}(t)=e^{t}, y_{2}(t)=t e^{t}$ form a fundamental set of solution of $y^{\prime \prime}-2 y^{\prime}+y=0$
30. Solve $y^{\prime}=t^{2} y-t, y(0)=0$ by the method of successive approximation.
31. Find a particular solution of $y^{\prime \prime}+4 y=3 \csc t$.
32. Show that $L(\sin a t)=\frac{a}{s^{2}+a^{2}}, s>0$
33. Find $L^{-1}\left(\frac{e^{-2 s}}{s^{2}+s-2}\right)$
34. Find Inverse Laplace transform of $F(s)=\frac{1}{s^{4}\left(s^{2}+1\right)}$
35. State and prove Abel's theorem.
(6 x $7=42$ Marks)

Section D

Answer any two questions. Each question carries 13 marks.
36. Find the solution of $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, y(0)=2, y^{\prime}(0)=-1$ using Laplace transform.
37. Find the solution of the heat conduction problem $u_{x x}=4 u_{t}, 0<x<2, t>0$

$$
\begin{gathered}
u(0, t)=0, \quad u(2, t)=0 \\
u(x, 0)=2 \sin \frac{\pi x}{2}-\sin \pi x+4 \sin 2 \pi x .
\end{gathered}
$$

38. Find the Fourier series of $f(x)=\left\{\begin{array}{rr}-x, & -2 \leq x<0 \\ x, & 0 \leq x<2\end{array}\right.$, $f(x+4)=f(x)$. Then show that $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$
