\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CUCBCSS-UG)
(Regular/Supplementary/Improvement)
CC15U PH5 B07-QUANTUM MECHANICS
(Physics - Core Course)

Time: Three Hours
(2015 Admission onwards)

The symbols used in this question paper have their usual meaning.

Section A

Answer all questions in a word or a phrase. Each question carries 1 mark

1. The de Broglie wavelength of an electron accelerated to a potential difference of V volts is
. If $\psi(x)=\mathrm{Ae}^{-\mathrm{x}}$ for $0<\mathrm{x}<\infty$, the normalization constant is \qquad
2. If the frequency of light in a photoelectric experiment is doubled, the stopping potential will
3. In Compton scattering the incident photon losses maximum energy to the electron when the photon is scattered at \qquad
4. The z - component of spin magnetic moment is equal to \qquad
Write true or false:
5. Davisson and Germer experiment confirms particle behaviour of electron.
6. Two photons having equal energies have equal linear momenta.
7. According to Bohr atom model, the orbital radius of electron is directly proportional to n .
8. The potential function of harmonic oscillator is linear.
9. Fine structure in spectral lines and anomalous Zeeman effect, are explained on the basis of electron charge.
(10×1 = 10 Marks)

Section B

Answer all questions in two or three sentences. Each question carries 2 marks.
11. Why Compton effect cannot occur with visible light?
12. Explain energy-time uncertainty principle. Does uncertainty exists in classical mechanics?
13. What is the importance of Frank-Hertz experiment?
15. What is meant by normalised and orthogonal wave functions?
16. Define Bohr magneton. Write down an expression for it.
17. What is meant by space quantization of spin angular momentum?

($\mathbf{x} 2$ = $\mathbf{1 4}$ Marks)

Section C

Answer any five questions in a paragraph. Each question carries 4 marks
18. Show that it is impossible for pair production to conserve both energy and momentum unless some other object is involved in the process to vary away part of photon.
19. What is the basic working principle of an electron microscope?
20. Write down expressions for energy level with and without taking nuclear motion into account. Elaborate on both.
21. Why the energy of a particle trapped in a box is quantized?
22. What is meant by radiative transition?
23. What are the similarities and dissimilarities of the predictions of classical and quantum oscillators?
24. Show that for a non-relativistic free particle, the phase velocity is half the group velocity.

($5 \times 4=20$ Marks)

Section D

Answer any four questions. Each question carries 4 marks
Problems write all relevant formulas, all important steps carries separate marks.
25. The suns mass is $2 \times 10^{30} \mathrm{~kg}$ and its radius is $7 \times 10^{8} \mathrm{~m}$. Find the approximate gravitational red shift in light of wavelength 500 nm emitted by the sun.
26. An electron has a speed of $300 \mathrm{~m} / \mathrm{s}$ accurate to 0.01%. With what fundamental accuracy can we locate the position of the electron
27. Find the shortest wavelength present in the radiation from an X-Ray machine whose accelerating potential is $50,000 \mathrm{~V}$.
28. Light of wavelength $4500 \AA$ ejects photoelectrons from a sodium surface of work function 2.3 eV . The stopping potential is experimentally found to be 0.46 volts. Calculate Planck's constant.
29. Find the wavelength of the spectral line that corresponds to a transition in hydrogen from the $\mathrm{n}=10$ state to the ground state. In what part of the spectrum is this?
30. A sample of a certain element is placed in a magnetic field of strength 0.4 T and suitably excited. How to apart are the Zeeman components of 400 nm spectral line of this element.
31. Electron with energy 1 eV is incidence on a barrier of height 10 eV and width 0.5 nm . Find the transmission probability.

($4 \times 4=16$ Marks)

Section E (Essays)

Answer any two questions in about two pages. Each question carries 10 marks
32. What is black body radiation? Discuss the Rayleigh Jeans formula and Planck radiation formula in explaining the black body spectra. Bring out the salient differences.
33. Elaborate on matter waves and its significance. Explain how particle diffraction was used as an experimental tool for verifying De Brogliés hypothesis.
34. What is a stationary state? Derive steady state form of Schrödinger equation from time dependent form.
35. Applying the separation of variable method, obtain the differential equation of hydrogen atom.
($2 \times 10=20$ Marks)

