\qquad
\qquad

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CBCSS-PG)
 (Regular/Supplementary/Improvement)

CC19P MST1 C02 - ANALYTICAL TOOLS FOR STATISTICS - II

(Statistics)
(2019 Admission onwards)
Time: Three Hours

Maximum: 30 Weightage

PART A

Answer any four questions. Weightage 2 for each question

1. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are linearly independent in \mathbb{R}^{n}, then prove that the vectors $\alpha_{1}+\alpha_{2}$, $\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{3}$ are also linearly independent in \mathbb{R}^{n}.
2. Define rank and signature of a quadratic form with example.
3. If \bar{A} is the g-inverse of A, Show that $A \bar{A} A=\bar{A}$.
4. Find the minimal polynomial of $\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$
5. Show that the system $x+2 y=1,3 x+6 y=7$ has no solution.
6. State and prove basis theorem.
7. Define an involutory matrix. Show that A is involutory if and only if $(I+A)(I-A)=0$.
($4 \times 2=8$ Weightage)

PART B

Answer any four questions. Each question carries 3 weightage.
8. Determine the basis and dimension for the solution space of,

$$
\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}-x_{4}+3 x_{5}=0 \\
& 3 x_{1}+6 x_{2}+8 x_{3}+x_{4}+5 x_{5}=0 \\
& x_{1}+2 x_{2}+3 x_{3}+x_{4}+5 x_{5}=0 .
\end{aligned}
$$

9. Classify the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}+2 x y+2 y z+2 x z$.
10. Find the singular value decomposition of $A=\left[\begin{array}{ccc}8 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$.
11. Find the rank. Also find a basis for row space and column space for $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & -4 \\ 0 & 4 & 0\end{array}\right]$.
12. Prove that the geometric multiplicity of a characteristic root cannot exceed algebraic multiplicity of the same.
13. Show that any two characteristic vectors corresponding to two distinct characteristic roots of a symmetric matrix are orthogonal.
14. Obtain the g - inverse of $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 4 \\ 2 & 4 & 6\end{array}\right]$

PART C

Answer any two questions. Each question carries 5 weightage.
15. (a) Define an inner product space. For any vectors α, β in an inner product space V, prove that $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$.
(b) Prove that an orthogonal set of non zero vectors is linearly independent.
16. (a) Define a subspace. Let $W=\left\{\{x, y, z\} ; x^{2}=y\right\}$. Is W a subspace of \mathbb{R}^{3} ?
(b) Prove that the intersection of two subspaces of a vector space V is a subspace of V .
17. (a) Define Moore Penrose inverse of a matrix. Show that it is unique.
(b) State and prove Cayley - Hamilton theorem.
18. (a) Let U and W be the vector space over the same field F and let T be linear transformation from V into W. Suppose that V is finite dimensional. Prove that $\operatorname{rank}(\mathrm{T})+\operatorname{nullity}(\mathrm{T})=\operatorname{dim} \mathrm{V}$.
(b) Find the rank and nullity of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+2 y-z, y+z, x+y-2 z)$.

