\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020
(CBCSS-PG)
(Regular/Supplementary/Improvement)
CC19P MST1 C04 - PROBABILITY THEORY
(Statistics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

Part A

Answer any four questions. Each question carries 2 weightage.

1. Define σ field. Show that intersection of arbitrary number of σ field is a σ field.
2. What do you mean by probability space? If A_{n} is a sequence of events and A_{n} converges to A then show that $P\left(A_{n}\right)$ converges to $P(A)$.
3. State and prove Basic inequality.
4. For any characteristic function φ, show that
(a) $\operatorname{Re}(1-\varphi(u)) \geq(1 / 4)$
(b) $|\varphi(u)-\varphi(u+h)|^{2} \leq 2\{1-\operatorname{Re} \varphi(h)\}$
5. Define almost sure convergence. If X_{n} is a sequence of random variables such that $X_{n} \xrightarrow{\text { a.s }} X$ then, show that $X_{n} \xrightarrow{p} X$
6. State and prove Levi's Continuity theorem.
7. State strong law of large numbers. Examine whether it hold for the sequence $\left\{X_{n}\right\}$, if $P\left(X_{k}=1\right)=\frac{\left(1-2^{-k}\right)}{2}=P\left(X_{k}=-1\right), P\left(X_{k}=2^{k}\right)=2^{-(k+1)}=P\left(X_{k}=-2^{k}\right)$
($4 \times 2=8$ Weightage)

Part B

Answer any four questions. Each question carries 3 weightage.
8. What do you mean by induced probability space? Write down the induced probability space of a random variable X 'number of heads turns up' when a coin is tossed n times
9. Define distribution function. State and prove its properties.
10. Define expectation of a random variable. If X and Y are two random variables, show that $E(X+Y)=E(X)+E(Y)$
11. Show that convergence in probability implies weak convergence. Is the converse true?
12. State and prove Hally- Bray lemma
13. State and prove necessary and sufficient condition for a sequence of random variables to hold WLLN.
14. Examine whether CLT hold for the sequence of independence random variables $\left\{X_{n}\right\}, n=1,2,3 \ldots$ where X_{n} is Poisson with mean λ

$$
(4 \times 3=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
15. State and prove (a) Kolmogrov 0-1 law. (b) Borel 0-1 law.
16. (a) Define convergence in $r^{t h}$ mean.
(b) State and prove monotone convergence theorem
17. State and prove Inversion theorem on characteristic function. Obtain the density function if the characteristic function is $e^{-|u|}$
18. State and prove De-Movire's - Laplace central limit theorem.

