\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020

 (CBCSS-PG)(Regular/Supplementary/Improvement)
CC19P MTH1 C04 - DISCRETE MATHEMATICS
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Define a lattice. Give an example.
2. Let $(X,+, ., ')$ be a Boolean algebra. Prove that $\left(x^{\prime}\right)^{\prime}=x$ for all $x \in X$.
3. Find all the characteristic numbers of the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$.
4. Show that the sequence $d=(7,6,3,3,2,1,1,1)$ is not graphical.
5. Show that if G is a self-complementary graph of order n, then $n \equiv 0$ or $1(\bmod 4)$.
6. Prove that the Petersen graph is nonplanar.
7. Find a grammar for $\Sigma=\{a, b\}$ that generates the set of all strings with at least one a.
8. If $\Sigma=\{0,1\}$, design an $n f a$ to accept the set of strings either ending with two consecutive zeros or two consecutive ones.

$$
(8 \times 1=8 \text { weightage })
$$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT- I

9. Let X be a finite set and \leq be a partial order on $X . R$ is a binary relation on X defined by $x R y$ iff y covers x. Prove that \leq is the smallest order relation containing R.
10. Let $(X,+, ., ')$ be a finite Boolean algebra. Prove that every non-zero element of X contains at least one atom.
11. Write the Boolean function $f(a, b, c)=a+b+c^{\prime}$, in their disjunctive normal form.

UNIT- II
12. Prove that for any loopless connected graph $G, \kappa(G) \leq \lambda(G) \leq \delta(G)$.
13. Prove that a graph is planar if and only if it is embeddable on a sphere.
14. Let G be a planar graph with at least three vertices, then show that $m \leq 3 n-6$.
15. (a) Prove that $\left(w^{R}\right)^{R}=w$ for all $w \in \Sigma^{*}$.
(b) Find the grammar for the language $L=\{w:|w| \bmod 3=0\}$ on $\Sigma=\{a\}$.
16. Find a dfa for the language $L=\left\{w:\left(n_{a}(w)-n_{b}(w)\right) \bmod 3>0\right\}$ on $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
17. Design an $n f a$ with no more than 5 states for the set $\left\{a b a b^{n}: n \geq 0\right\} \cup\left\{a b a^{n}: n \geq 0\right\}$

$$
(6 \times 2=12 \text { weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. Prove that (X, \leq) is a lattice where $\left(X,+,,^{\prime}\right)$ is the Boolean algebra and \leq is defined in X by $x \leq y$ if and only if $x \cdot y^{\prime}=0$. Find the maximum and minimum elements of this lattice.
(b) Prove that every finite Boolean algebra is isomorphic to a power set Boolean algebra.
19. Prove that the set of all symmetric Boolean functions of n Boolean variables x_{1}, x_{2}, \ldots, x_{n} is a subalgebra of the Boolean algebra of all Boolean functions of these variables. Also prove that as a Boolean algebra, it is isomorphic to the power set Boolean algebra of the set $\{1,2, \ldots, n\}$.
20. (a) Prove that a graph is bipartite if and only if it contains no odd cycles.
(b) Prove that a simple graph is a tree if and only if any two distinct vertices are connected by a unique path.
21. (a) Show that the language $L=\left\{a w a: w \in\{a, b\}^{*}\right\}$ is regular.
(b) Find a $d f a$ equivalent to the following $n f a$.

($2 \times 5=10$ weightage)

